
Extremal self-dual codes

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Dipl.-Math. Anton Malevich

geb. am 07.02.1986 in Minsk

genehmigt durch die Fakultät für Mathematik
der Otto-von-Guericke-Universität Magdeburg.

Gutachter: Prof. Dr. Wolfgang Willems
Prof. Dr. Patric R.J. Östergård

eingereicht am: 04.06.2012

Verteidigung am: 22.10.2012

Abstract

In the present thesis we consider extremal self-dual codes. We mainly concen-
trate on Type II codes (binary doubly-even codes), which may theoretically exist
for lengths n = 8k ≤ 3928. It is noteworthy that extremal Type II codes have
been actually constructed only for 13 lengths, 136 being the largest. Over the
last decades the study of extremal codes became inseparable from the study of
their automorphisms. For example, one of the few methods to construct a new
“good” code C is to assume that C is invariant under a certain automorphism
and to use the restrictions imposed by this fact.

Making use of the non-trivial automorphism groups we classify extremal
extended quadratic residue codes and quadratic double circulant codes. The
two families provide examples of extremal codes for 9 of the 13 lengths, for
which extremal codes are constructed.

Another of our main results is the classification of extremal Type II codes C
with 2-transitive automorphism groups. We show that C is either a quadratic
residue code, a Reed-Muller code, or a putative code of length 1024. Similar
classification results are also obtained in case of ternary and quaternary extremal
codes.

In the thesis we also provide a new easy-to-handle criterion to determine
possible cycle structures of the automorphisms of binary extremal codes. Using
this result we show that a binary extremal code of length n with an automor-
phism of prime order p > n

2 is equivalent to an extended cyclic code. We classify
extremal extended cyclic codes of length n ≤ 1000. Moreover, we prove that for
all but 11 values of n > 1000 no extremal extended cyclic code can exist.

In the final part of the thesis we consider singly-even and doubly-even binary
extremal codes in terms of their decoding performance. We are able to deter-
mine the best singly-even codes and prove that these always perform better than
doubly-even codes with the same parameters.

Zusammenfassung

In der vorliegenden Arbeit untersuchen wir extremale selbstduale Codes. Haupt-
sächlich konzentrieren wir uns auf Typ II Codes (d.h., binäre doppeltgerade Co-
des), welche theoretisch für Längen n = 8k ≤ 3928 für ganzzalige k existieren
können. Es ist bemerkenswert, dass extremale Typ II Codes eigentlich nur für 13
Längen konstruiert sind, wobei 136 die größte ist. Über die letzten Jahrzehnte
ist die Untesuchung der extremalen Codes fast unzertrennlich von der Unter-
suchung zugehöriger Automorphismen geworden. So besteht zum Beispiel eine
der wenigen Methoden zur Konstruktion eines neuen Codes C darin, die In-
varianz von C unter einem konkreten Automorphismus anzunehmen und die
daraus folgenden Beschränkungen auszunutzen.

Unter Verwendung der nicht trivialen Automorphismengruppen klassifizie-
ren wir sowohl die extremalen erweiterten quadratischen Restklassen-Codes, als
auch die extremalen quadratischen doppelt zirkulanten Codes. Diese beiden Fa-
milien liefern Beispiele der extremalen Codes für 9 von den 13 Längen.

Zu den zentralen Ergebnissen der Arbeit gehört weiterhin die Klassifikation
der extremalen Typ II Codes C mit 2-fach transitiven Automorphismengrup-
pen. Wir beweisen, dass C entweder ein quadratischer Restklassen-Code, ein
Reed-Muller-Code, oder ein möglicher Code der Länge 1024 ist. Ähnliche Klas-
sifikationssätze erhalten wir auch für die ternären und quaternären extremalen
Codes.

In der Dissertation stellen wir ein neues Kriterium bereit, mit dem man leicht
die möglichen Zyklen-Strukturen der Automorphismen der binären extremalen
Codes bestimmen kann. Mithilfe dieses Kriteriums zeigen wir, dass ein binärer
extremaler Code der Länge n mit einem Automorphismus der Ordnung p > n

2 ,
wobei p eine Primzahl ist, äquivalent zu einem erweiterten zyklischen Code ist.
Wir klassifizieren die erweiterten zyklischen Codes der Länge n ≤ 1000. Außer-
dem beweisen wir, dass für alle bis auf 11 Werte von n > 1000 kein extremaler
erweiterter zyklischer Code existiert.

Im letzten Teil der Arbeit betrachten wir einfach- und doppeltgerade binäre
extremale Codes bezüglich deren Dekodierenleistung. Wir bestimmen die besten
einfachgeraden Codes und beweisen, dass diese immer leistungfähiger als die
doppeltgeraden Codes mit denselben Parametern sind.

Contents

Introduction 9

1 Preliminaries 13
1.1 Extremal self-dual codes . 13
1.2 Automorphism groups, group algebras 18
1.3 Cyclic and duadic codes . 21
1.4 Weight enumerators of self-dual codes 25

2 Automorphisms of extremal codes 31
2.1 Known extremal Type II codes and their automorphisms 31
2.2 Types of automorphisms of binary extremal codes 35
2.3 Extremal Type II codes arising from quadratic residues 37
2.4 Extremal Type II extended cyclic codes 42
2.5 Automorphism groups of binary extended duadic codes 49
2.6 Extremal binary affine-invariant codes 50
2.7 Extremal Type II codes and elementary abelian groups 54
2.8 Extremal Type II codes with 2-transitive automorphism groups . . 57
2.9 Extremal Type III codes with 2-transitive automorphism groups . . 60
2.10 Extremal Type IV codes with 2-transitive automorphism groups . . 62

3 Performance of self-dual codes 65
3.1 A way to measure performance of codes 65
3.2 Performance of known extremal binary codes 67
3.3 Best performing extremal Type I codes 68
3.4 Performance comparison of extemal Type I and Type II codes . . . 71

A Code of Magma programs 73

Bibliography 79

Index 87

List of Tables

2.1 Primes that can occur as a factor of the automorphism group order
for some extremal Type II code . 33

2.2 Simple groups that can occur as a socle of a 2-transitive group . . . 59

3.1 Number of minimum weight codewords in binary extremal codes 68

List of Listings

A.1 Program for Example 2.3.9 . 73
A.2 Program for Example 2.3.10 . 73
A.3 Program for Example 2.3.16 . 74
A.4 Program for Example 2.4.16 . 74
A.5 Program for Remark 2.6.9. Case n = 512 75
A.6 Program for Example 2.7.4 . 76
A.7 Program for Example 2.8.4 . 76
A.8 Program for Example 2.9.2 . 77
A.9 Program for Example 2.10.2 . 78

Introduction

The theory of linear codes is a relatively new subject in mathematics. The first
two papers by Golay [31] and Hamming [34] were published in 1949 and 1950,
respectively. In these papers it was described how k-tuples, which represent
digital messages, may be embedded in an n-dimensional space, where k ≤ n,
such that the highest possible number of errors can be corrected.

An [n, k, d] linear code C is a k-dimensional subspace of a vector space Fn over
a finite field F. The dimension n of the ambient space is called the length of C.
The parameter d stands for the smallest positive weight among the codewords
and is called the minimum distance of the code. Here the weight of a codeword is
the number of its nonzero coordinates. It was shown in [34] that the minimum
distance d is a measurement of how many errors in the information may be
corrected, if the code is used for data transmission. Thus, of particular interest
are codes that attain the highest possible minimum distance for given k and n.

In the present work we concentrate on self-dual codes, i.e., codes that are equal
to their duals with respect to a given scalar product on Fn. For these codes the
dimension k equals n

2 . Self-dual codes are important mainly due to connections
to invariant theory and the theory of block designs. Self-dual codes, for which
the weight of every codeword is divisible by some integer greater than one, are
called divisible. There are four types of divisible codes. Codes of Type II are
binary self-dual codes with all weights divisible by 4. Type I codes are binary
self-dual codes with at least one codeword of weight 2 modulo 4. Codes of
Type III are ternary codes with all weights divisible by 3. Finally, a Type IV
code is a code over F4, which is self-dual with respect to the Hermitian scalar
product, such that all weights are divisible by 2.

A self-dual divisible code is called extremal if its minimum distance attains the
highest possible value. For instance, for Type II codes we have d ≤ 4

⌊ n
24

⌋
+ 4,

and the code is extremal if the equality holds. Notable examples of extremal
Type II codes are the [8, 4, 4] and [24, 12, 8] codes defined in the aforementioned
papers by Hamming and Golay, respectively. Examples of extremal Type II codes
were constructed for a total of 13 lengths, the highest being 136. However, it
was proven that extremal codes can not exist for arbitrarily large lengths. In
particular, for codes of Types II, III, and IV the explicit upper bounds of the
length of an extremal code were given. The best known bound for Type II codes

10 INTRODUCTION

is especially large with n ≤ 3928. Thus, we see that there is a huge gap between
what is actually constructed and what can theoretically exist. Unfortunately,
the problem of closing or reducing the gap appears to be extremely difficult, as
the known methods (see [85] and [27]) produce the same upper bound, and no
extremal code of length greater than 136 has been constructed.

In the thesis we do not try to attack the gap in general. Instead we classify
extremal codes with some additional properties. On the one hand, we con-
sider codes that arise from some special constructions, e.g., quadratic residue
and quadratic double circulant codes. Our main results in this area include the
following two theorems.

Theorem 2.3.8. Let C be an extremal extended quadratic residue code of length n. Then
n = 8, 24, 32, 48, 80, or 104.

Theorem 2.3.15. Let C be an extremal quadratic double circulant code of length n. Then
n = 8, 24, 40, 88, or 136.

On the other hand, we study codes with prescribed automorphisms, i.e., per-
mutations of the n coordinate positions that leave a code invariant. One of our
main results is the following classification of extremal codes with 2-transitive
automorphism groups.

Theorem 2.8.1. Let C be an extremal Type II code of length n. If Aut(C) is 2-transitive,
then one of the following holds.

(i) n = 8, 24, 32, 48, 80, or 104, and C is equivalent to an extended quadratic residue
code,

(ii) n = 32 and up to equivalence C is the second order Reed-Muller code,
(iii) possibly n = 1024 and C is invariant under the group T o SL(2, 25), where T is

the group of translations of the vector space F10
2 .

Another question that we touch upon in the present work is the follow-
ing: Which type of binary extremal codes does perform better, if codes are
used for information transmission? Both Type I and Type II codes of length
n ≡ 8 or 16 mod 24 share the same parameters. We compare their performance
using a result of Faldum et al. [28]. We are able to determine the best perform-
ing extremal Type I codes (these are so-called s-extremal codes) and prove the
following result.

Theorem 3.4.1.

(i) Extremal Type I codes with minimal shadow perform better than extremal Type II
codes for lengths n = 24m+ 8. In particular, s-extremal codes perform better than
extremal Type II codes.

(ii) s-extremal Type I codes perform better than extremal Type II codes for lengths
n = 24m + 16.

INTRODUCTION 11

Below we give an overview of the thesis.

In Chapter 1 we introduce the notation and definitions used throughout the
work. In the first section we define the setting. The next two sections list the facts
that are later used in Chapter 2. Finally, in Section 1.4 we gather the definitions
and results that are important for Chapter 3.

The main part of the thesis consists of two independent chapters.

In Chapter 2 we consider automorphism of extremal codes. More precisely,
we study if extremal codes may exist under certain assumptions about the auto-
morphism group. We mainly focus on Type II codes in this chapter, though in
the last two sections we apply the methods developed for Type II codes to codes
of Types III and IV.

In Section 2.1 we give an overview of the known extremal Type II codes.
We also give a historical survey of how the study of putative extremal codes of
lengths 72, 96, and 120 progressed over the last 30 years. In this section we also
pay particular attention to the families of codes that provide several examples of
extremal codes.

In Section 2.2 we study the possible cycle structures of the automorphisms of
extremal Type II codes. We provide a new easy-to-handle result, which, in par-
ticular, allows us to show that a putative extremal code with an automorphism
of prime order greater than n

2 is equivalent to an extended cyclic code.
We completely classify extremal Type II codes that arise from quadratic re-

sidues in Section 2.3. These codes generalize the [8, 4, 4] Hamming and the
[24, 12, 8] Golay codes in two possible ways and provide examples of extremal
Type II codes for 9 of 13 lengths, for which extremal codes have been constructed.
We also describe an algorithm that we use to effectively search for small weight
codewords, which is applied in the proof of some of our results.

In the next section we generalize our approach to extended quadratic residue
codes from Section 2.3 to the general case of extended cyclic codes. We decribe a
method to construct all cyclic codes of prime length p ≡ −1 mod 8 with self-dual
extensions and provide a tool to determine the inequivalent ones. In Section 2.4
we also start a classification of extremal extended cyclic codes, where we list all
extremal extended cyclic codes of length less than 1000. Moreover, we prove
that for all but 11 lengths greater than 1000 no extremal extended cyclic code
can exist.

In Section 2.5 we discuss when the automorphism group of an extended
cyclic code can be 2-transitive. We notice that in order to classify extremal ex-
tended cyclic codes with 2-transitive groups it only remains to consider so-called
affine-invariant codes. We classify these in Section 2.6 using a method by Charpin
and Levy-dit-Vehel [17].

Sections 2.5 and 2.6 serve as a preparation for the classification of extremal
Type II codes with 2-transitive groups. We generalize the approach of Section 2.6

12 INTRODUCTION

to a more general case of codes invariant under extensions of elementary abelian
groups in Section 2.7. The central point of our method is to consider a code as a
module for the automorphism group. In Section 2.8 we consider extremal codes
with 2-transitive simple groups, thus completing the classification of extremal
Type II codes with 2-transitive automorphism groups. The method is then used
in Sections 2.9 and 2.10 to classify extremal Type III and Type IV codes with
2-transitive permutation automorphism group.

The classification results in Chapter 2 rely in part on computer calculations.
These are carried out with Magma [5] and explained in numerous examples
throughout the chapter. The source code of Magma programs for the examples
is listed in Appendix A.

In Chapter 3 we compare extremal codes of Types I and II with respect to
their performance. We use a result of [28] to define performance in terms of
weight distribution in Section 3.1. In Section 3.2 we consider known extremal
codes and discuss, which type of codes might be expected to perform better.
Extremal Type II codes all have the same weight distribution, and therefore they
all share the same quality of performance. However, this is not the case for
extremal Type I codes. In Section 3.3 we prove that so-called s-extremal codes are
the best performing among them. We then proceed to compare s-extremal (and
some other Type I codes) to Type II codes in Section 3.4. We prove that certain
Type I codes always perform better than any Type II codes, provided they are of
the same length.

Acknowledgments

First of all, I would like to express my deep gratitude to my supervisor, Wolfgang
Willems, for his guidance and inspiration, which made this thesis possible in
the first place. I wish to thank Stefka Bouyuklieva and Iliya Bouyukliev for the
numerous fruitful conversations, which improved my understanding of coding
theory and had direct influence on my work. Additionally, I would like to thank
Patric Östergård for agreeing to review the current thesis.

I am further grateful to my colleges for the good office atmosphere and their
help on many occasions. In particular, I would like to thank Ralph August for
all his advises, which made adapting to life in Germany much easier.

For the most welcome weekly distractions I wish to thank our “Fußball-
truppe”.

I am deeply grateful to my parents: to my father, for nurturing my love for
mathematics, and to my mother, for her confidence in me.

Finally, and most importantly, I want to thank my best friend and my wife,
Nadja, for everything, especially for helping me cope with even the most stress-
ful moments.

Chapter 1

Preliminaries

The aim of this chapter is to introduce the notation and notions used through-
out the thesis. In Section 1.1 the setting is defined and the basic concept of an
extremal self-dual code is introduced. It will be the main object of interest in the
work. In Section 1.2 we describe the connections between codes and group alge-
bras. There we give a description of a code as a module for the automorphism
group. Cyclic codes are described in detail in Section 1.3. The final section of the
chapter is devoted to weight enumerators and some techniques to handle them.

For a more thorough discussion of these topics we refer the reader to one of
the books [41], [57], or [69].

1.1 Extremal self-dual codes

Let Fn
q denote the n-dimensional linear space over a field Fq with q elements. A

linear code C is a subspace of Fn
q . The dimension n of the ambient space Fn

q is
called the length of C. A vector c = (c0, c1, . . . , cn−1) ∈ C is called a codeword and
the number

wt(c) = |{i | 0 ≤ i ≤ n− 1, ci 6= 0}|

is called the weight of c. The smallest positive weight in the code C is called the
minimum distance. The use of the word distance is explained by the following fact.
The function dist : Fn

q → N0 defined by dist(x, y) = wt(x− y) for x, y ∈ Fn
q is a

metric on Fn
q . For a linear code C we have

min
x,y∈C

dist(x, y) = min
x∈C

dist(x, 0) = min
x∈C

wt(x),

since by linearity x− y ∈ C as long as x, y ∈ C.
A k-dimensional code of length n over Fq with minimum distance d will be

referred to as an [n, k, d]q code. We omit the subscript q if the underlying field is
clear from the context.

14 CHAPTER 1. PRELIMINARIES

Let C be an [n, k, d]q code and let v1, . . . , vk, where vi = (vi,0, vi,1 . . . , vi,n−1) ∈ Fn
q

for all 1 ≤ i ≤ k, be its Fq-basis. A (k× n)-matrix

G =

v1,0 v1,1 · · · v1,n−1

v2,0 v2,1 · · · v2,n−1
...

...
vk,0 vk,1 · · · vk,n−1

 ,

which contains the basis vectors v1, . . . , vk as rows, is called the generator matrix
of the code C. One can extend the code C by adding a coordinate. The extended
code, denoted by Ĉ, is an [n + 1, k, d′] code, where d′ = d or d′ = d + 1, and has
a generator matrix

Ĝ =

v1,0 v1,1 · · · v1,n−1 v1,∞
v2,0 v2,1 · · · v2,n−1 v2,∞

...
...

...
vk,0 vk,1 · · · vk,n−1 vk,∞

 ,

where vi,∞ are chosen so that

vi,0 + vi,1 + . . . + vi,n−1 + vi,∞ = 0

for all 1 ≤ i ≤ k. In general, a vector x = (x0, . . . , xn−1) ∈ Fn
q with the sum of

its components equal to zero is called even-like. A code is called even-like if it has
only even-like vectors; a code is odd-like if it is not even-like.

In case when the all-one vector 1 = (1, . . . , 1) ∈ Fn
q does not lie in the code C,

the process of extending is often preceded by augmenting the code, i.e., adding 1
as the last row of the generator matrix. Augmenting the code, supplemented by
extending, is referred to as lengthening. The inverse operation to the lengthening
process is called shortening. Let T be a set of t coordinates and let C(T) denote
the set of all codewords of C which are zero on T. Puncturing C(T) on T, i.e.
removing the coordinates T from all vectors of C(T), gives the shortened code CT
of length n− t.

Note that in the present work we denote the k× k identity matrix by Ik.

The ambient space Fn
q is endowed with a standard (Euclidean) scalar pro-

duct (. , .) given by

(x, y) =
n−1

∑
i=0

xiyi for all x, y ∈ Fn
q .

If q is a square (say, q = r2), instead of the standard we will consider the Hermi-
tian scalar product

(u, w) =
n−1

∑
i=0

uiwr
i for all u, w ∈ Fn

r2 .

1.1. Extremal self-dual codes 15

(The map x 7→ xr, x ∈ Fr2 , is called global conjugation. In the case, when r is a
prime, e.g., r = 2, this map is usually referred to as Frobenius automorphism.)

For a linear code C of length n over Fq we define the dual code C⊥ by

C⊥ =
{

v ∈ Fn
q

∣∣∣ (v, c) = 0 for all c ∈ C
}

.

If C ≤ C⊥ we call C self-orthogonal. If C = C⊥ we say that the code C is self-dual.
From linear algebra we know that dim C⊥ = n − dim C for every linear

code C. In particular, the length of a self-dual code is always even, and its
dimension equals half of the length.

For small fields self-duality also imposes restrictions on possible weights of
the codewords.

Example 1.1.1. Let C be a self-dual
[
n, n

2 , d
]

q code, where q = 2, 3, or 4. For
all c ∈ C we have (c, c) = 0. In particular, for q = 2, 3 we get

0 = (c, c) =
n−1

∑
i=0

c2
i = 1 · |{i | 0 ≤ i ≤ n− 1, ci 6= 0}| mod q = wt(c) mod q.

For F4 and the Hermitian scalar product we get

0 = (c, c) =
n−1

∑
i=0

c3
i = 1 · |{i | 0 ≤ i ≤ n− 1, ci 6= 0}| mod 2 = wt(c) mod 2.

Thus, for self-dual codes over F2 , F3, and F4 all weights are divisible by 2, 3,
and 2, respectively.

In general, if for a code C there exists an integer ∆ > 1, such that ∆|wt(c)
for all c ∈ C, then C is said to be divisible. The largest integer ∆, for which the
code C is divisible, is called the divisor of C.

All self-dual divisible codes over Fq are classified by the famous Gleason–
Pierce Theorem.

Theorem 1.1.2 (Gleason–Pierce, see [77]). Let C be a self-dual divisible code of length
n over Fq with divisor ∆. Then one of the following holds true

(i) (q, ∆) = (2, 2),

(ii) (q, ∆) = (2, 4),

(iii) (q, ∆) = (3, 3),

(iv) (q, ∆) = (4, 2),

(v) ∆ = 2 and C is equivalent to the code over Fq with generator matrix [In/2 In/2].

Remark 1.1.3. The codes appearing in case (v) of Theorem 1.1.2 are trivial and
will be of no interest in this work.

16 CHAPTER 1. PRELIMINARIES

In agreement with Theorem 1.1.2 and Example 1.1.1 we distinguish four types
of codes over Fq with q ≤ 4. E.g., a code C is said to be of Type II if it is self-
dual, the underlying field is F2 and weights of all codewords are divisible by 4.
For convenience, we set Type II 6⊆ Type I1. This means, we say that a code is of
Type I if it is self-dual, binary, all its weights are divisible by 2 and it has at least
one codeword of weight 2 mod 4. A ternary code is called a Type III code if it is
self-dual and weights of all its codewords are divisible by 3. Finally, a Type IV
code is a Hermitian self-dual code over F4 with all weights divisible by 2.

Traditionally binary divisible codes with ∆ = 4 are called doubly-even. Codes
with ∆ = 2 and at least one codeword of weight 2 mod 4 are called singly-even.

For codes of Types II, III, and IV the generalization of Theorem 1.1.2, the
so-called Gleason–Pierce–Ward Theorem, holds true.

Theorem 1.1.4 (Gleason–Pierce–Ward, see [41]). Let C be a divisible
[
n, n

2 , d
]

q code
with divisor ∆ and let (q, ∆) = (2, 4), (3, 3), or (4, 2). Then C is self-dual.

Below we give a combination of results by Mallows and Sloane [59], MacWil-
liams et al. [56] and Rains [70], which provides an upper bound on the minimum
distance of divisible self-dual codes.

Theorem 1.1.5 ([59], [56], [70]). Let C be a self-dual divisible
[
n, n

2 , d
]

q code. Then

d ≤ 4
⌊ n

24

⌋
+ 4, if C is of Type II or C is Type I and n 6≡ 22 mod 24,

d ≤ 4
⌊ n

24

⌋
+ 6, if C is Type I and n ≡ 22 mod 24,

d ≤ 3
⌊ n

12

⌋
+ 3, if C is of Type III,

d ≤ 2
⌊n

6

⌋
+ 2, if C is of Type IV.

Remark 1.1.6. The bound for Type I codes of length n ≡ 22 mod 24 may be
explained by the fact that they can be obtained by shortening Type II codes
of length n + 2.

Self-dual codes that achieve the bound from Theorem 1.1.5 are called extremal.

Extremal codes are of particular interest not only because they have the
largest possible minimum distance among self-dual codes. As a consequence
of the famous theorem of Assmus and Mattson [1], the existence of an extremal
code of Type II, III, or IV implies the existence of a t-design, where t can be as
large as 5.

Definition 1.1.7. A design is a pair (X, B), where X is a non-empty finite set
of v elements, called points, and B is a non-empty finite collection of k-subsets
of X, called blocks, that satisfy the following property: every subset of points of
size t is contained in exactly λ blocks. The pair (X, B) is also referred to as a
t -(v, k, λ) design, or simply as a t-design.

1 Some authors define Type II codes as a subset of Type I codes, see [72].

1.1. Extremal self-dual codes 17

To describe designs associated with an extremal code, we define the support
supp(c) of a codeword c ∈ C as follows

supp(c) = {i | ci 6= 0} .

Then, the set X = {0, 1, . . . , n− 1} of coordinate positions and the set

B = {supp(c) | c ∈ C, wt(c) = i}

of supports of all codewords with a given weight i form a t -(v, k, λ) design (see
Theorem 1.1.8). Here, v = n, k = i and λ is given by the formula

λ = Ai

(
i
t

)/(
n
t

)
,

where Ai is the number of codewords of weight i in the code C.
Below we state the Assmus–Mattson theorem in the case of Type II codes.

Theorem 1.1.8 ([1], see also [41, Theorem 9.3.10]). Let C be an extremal Type II code
of length n = 24m + 8` for ` = 0, 1, or 2. Then codewords of any fixed weight except 0
and n hold t-desings for the following parameters:

(i) t = 5 if ` = 0 and m ≥ 1,
(ii) t = 3 if ` = 1 and m ≥ 0, and

(iii) t = 1 if ` = 2 and m ≥ 0.

Remark 1.1.9. Similar results hold for extremal codes of Types III and IV.

Despite their importance, extremal codes of any Type can not exist for arbi-
trarily large lengths. Moreover, for Types II, III, and IV an explicit upper bound
on the length of an extremal code is known.

Theorem 1.1.10 (Zhang [85]). Let C be an extremal self-dual code of length n and of
Type II or IV. Assume that n is divisible by 8 or 2, respectively. Then

(a) Type II: i < 154 if n = 24i, i < 159 if n = 24i + 8 and i < 164 if n = 24i + 16.
In particular C cannot exist for n > 3928.

(b) Type IV: i < 17 if n = 6i, i < 20 if n = 6i + 2 and i < 22 if n = 6i + 4. In
particular C cannot exist for n > 130.

Theorem 1.1.11 (Zhang [85]). Let C be an extremal self-dual code of Type III and
length n. Then n < 144 and, moreover, n 6= 72, 96, 120.

There is no explicit bound on the length of an extremal Type I code. In this
case only an asymptotic bound is known.

Theorem 1.1.12 (Rains [71]). Let Ci be a sequence of self-dual
[
ni,

ni
2 , di

]
codes of

Type I with lim
i→∞

ni → ∞. Then

lim sup
i→∞

di

ni
≤ 1− 5−1/4

2
≈ 0.16563.

18 CHAPTER 1. PRELIMINARIES

Corollary 1.1.13. Let (Ci)i∈N be a sequence of Type I codes of length ni = 24i + 2r,
where 0 ≤ r ≤ 11. Then only finitely many of the codes Ci can be extremal.

Proof. First note that by Theorem 1.4.6 extremal codes of Type I do not exist for
lengths a multiple of 24.

Suppose that there is a subsequence
(
Cik
)

k∈N
, such that all codes Cik are

extremal. From Theorem 1.1.5 we know that the minimum distance dik of Cik is
equal to 4ik + ε, where ε = 4 if 1 ≤ r ≤ 10 and ε = 6 if r = 11. Hence, we obtain

lim sup
k→∞

dik
nik

=
4ik + ε

24ik + 2r
=

1
6
>

1− 5−1/4

2
,

a contradiction to Theorem 1.1.12.

1.2 Automorphism groups, group algebras

The symmetric group Sn acts naturally on the space Fn
q and, hence, on a linear

code C of length n by permuting the coordinate positions. Let us remark that
throughout the entire work we denote the coordinates in Fn

q by 0, 1, . . . , n − 1
and assume that Sn is acting on the set {0, 1, . . . , n− 1} rather than {1, . . . , n}.
For a vector x ∈ Fn

q and a permutation σ ∈ Sn we set

xσ =
(
xσ−1(0), xσ−1(1), . . . , xσ−1(n−1)

)
. (1.1)

Clearly, both the weight function and the scalar product (and thus the process of
forming the dual code) are invariant under this action. However, apart from the
binary case, we can consider other transformations that leave both the weight
and the scalar product invariant. These are the monomial transformations (that
is, permutations of the coordinates, followed by multiplication of the coordi-
nates by nonzero elements) and, if the scalar product in question is Hermitian,
global conjugation. Two codes are called equivalent if one can be obtained from
the other by one of such transformations. The group of transformations that
leaves a given code C invariant is called the (full) automorphism group of C and
denoted Aut(C). Thus, for a binary code C we obtain

Aut(C) = {σ ∈ Sn |Cσ = C} .

Of particular interest in the thesis are codes with 2-transitive automorphism
groups. We remind the reader that a group G ≤ Sn is called transtitive if for any
two points there exists a permutation in G that maps one point onto the other.
For a point x ∈ {0, 1, . . . , n− 1} the orbit xG is defined by

xG = {xg | g ∈ G} .

1.2. Automorphism groups, group algebras 19

The stabilizer Gx is a subgroup that consists of all permutations in G that fix x,
i.e.,

Gx = {g ∈ G | xg = x} .

A group G is called 2-transitive if for some point x the stabilizer Gx is transitive
on the set {0, 1, . . . , n− 1} \ {x}. Recursively one can define 3-transitive groups
and so on.

Several times throughout the present work we use a couple of group theoret-
ical facts about 2-transitive groups. For ease of reference we collect them in the
following lemma.

Lemma 1.2.1 ([43]).

(i) Every 2-transitive group has a unique minimal normal subgroup, which is ele-
mentary abelian or simple.

(ii) A 2-transitive group of degree qm with a minimal normal elementary abelian sub-
group T is isomorphic to a subgroup of AGL(m, q). Moreover T is isomorphic
to the group of translations of the vector space Fm

q , i.e., mappings of the form
v 7→ v + a, where v, a ∈ Fm

q .

(iii) Every 2-transitive subgroup of AGL(m, 2) is an extension of an elementary abelian
group T of order 2m by a subgroup of GL(m, 2), which is transitive on 2m − 1
points.

We call a unique minimal normal subgroup of a 2-transitive group the socle of
the group. An elementary abelian group is a direct product of cyclic groups of the
same prime order. A group is said to be simple if it does not have any nontrivial
normal subgroups. We would like to remark that throughout the thesis we use
standard notation and group names (see [47] or [22]). E.g., AGL stands for affine
general linear group.

Let C be a linear code over Fq of length n and let G ≤ Aut(C). If the action
of G on C is defined by (1.1) then the code C becomes an FqG-module. Note
that the ambient space Fn

q is also an FqG-module with respect to the same action
of G. We formulate the fact that C is an FqG-module as the following statement.

Proposition 1.2.2. Let C be an [n, k, d]q code and let G ≤ Aut(C). Then C is a
k-dimensional submodule of the ambient space Fn

q , considered as an FqG-module.

In representation theory the dual module C∗ of an FqG-module C is defined
as the set of all Fq-linear maps from C to Fq, i.e., C∗ = HomFq(C, Fq). The dual
module C∗ becomes an FqG-module if we put

(f g) (c) = f
(
cg−1) for f ∈ C∗, g ∈ G and c ∈ C.

20 CHAPTER 1. PRELIMINARIES

As we already noted, the scalar product remains invariant under the action of
the automorphism group, i.e., the following holds true

(xg, yg) = (x, y) for all x, y ∈ C and g ∈ G.

From this we can easily see that the dual code C⊥ is also an FqG-module. Indeed,
let c ∈ C, c′ ∈ C⊥, and g ∈ G. We get(

c, c′g
)
=
(

cg−1, c′
)
= 0,

since cg−1 ∈ C. By definition of C⊥ it follows that c′g ∈ C⊥.
Clearly, the two duals C∗ and C⊥ are not the same object. However, there is

a connection between these two notions of duality.

Lemma 1.2.3. Let C be a code of length n over Fq and let G ≤ Aut(C). Then
C∗ ∼= Fn

q /C⊥ (as FqG-modules, in particular, as vector spaces).

Proof. The proof follows that of [78, Proposition 2.3].
Note that to prove the assertion we need to construct an FqG-linear isomor-

phism from Fn
q /C⊥ onto C∗.

For a vector v ∈ Fn
q define a function fv : C → Fq by fv(c) = (v, c) for c ∈ C.

Since the scalar product is linear in each component, fv is Fq-linear, hence,
fv ∈ C∗. The map α : Fn

q → C∗ given by v 7→ fv is Fq-linear as well. More-
over, α is FqG-linear since the G-invariance of the scalar product implies

α(vg)(c) = fvg(c) = (vg, c) =
(
v, cg−1)

= fv
(
cg−1) = (fvg

)
(c) =

(
α(v)g

)
(c)

for all v ∈ Fn
q , g ∈ G and c ∈ C. As C⊥ is the kernel of α we obtain an FqG-linear

monomorphism

α : Fn
q /C⊥ → C∗ with v + C⊥ 7→ α(v) = fv

Observe that ∣∣∣Fq/C⊥
∣∣∣ = qn−dim C⊥ = qdim C = |C| .

Finally, with |C∗| = |C| (see, for instance, [78, Proposition 2.2]) we obtain∣∣∣Fq/C⊥
∣∣∣ = |C∗| .

Hence, α is an FqG-linear isomorphism and the proof is complete.

We want to remark that in [78] the result of Lemma 1.2.3 was proved for a
special case of so-called group codes. A code C is said to be a group code if C
is an ideal in the group algebra FqG for some G ≤ Aut(C). Cyclic codes form
one of the best studied subclasses of group codes. Particularly important for
the present work are binary cyclic codes of odd length. We list some of their
properties it the next section.

1.3. Cyclic and duadic codes 21

1.3 Cyclic and duadic codes

Throughout this section we only consider binary cyclic codes of odd length n.

Definition 1.3.1. A linear code C of length n is called cyclic if it is invariant under
a cyclic shift, i.e., a permutation σ ∈ Sn of order n with σ : i 7→ i + 1 mod n.

We want to remark that the requirement that the length should be odd is
crucial for us. It implies that the group algebra F2 〈σ〉 is semi-simple, i.e., it can
be written as a direct sum of irreducible subalgebras. In particular, this allows
to classify all cyclic codes with self-dual extensions (see Lemma 2.4.7).

Denote by Rn the ring of univariate polynomials of degree less than n with
coefficients in F2:

Rn = F2[x]
/
〈xn − 1〉 .

Note that Rn ∼= F2 〈σ〉 as algebras, where 〈σ〉 denotes the cyclic group generated
by σ. Then a cyclic code C can be viewed as an ideal in Rn. The action of
the cyclic shift σ on a codeword c = (c0, c1, . . . , cn−1) ∈ C is equivalent to the
multiplication by x of a polynomial c(x) = c0 + c1x + . . . + cn−1xn−1 ∈ Rn.

Definition 1.3.2. A polynomial g(x) ∈ Rn of the smallest degree, such that it
generates the code C, is called the generator polynomial of C.

When describing cyclic codes, cyclotomic cosets are very helpful.

Definition 1.3.3. Let Zn be the set of integers modulo n. A cyclotomic coset
modulo n containing t is a subset Ct of Zn of the form

{
t, 2t, 22t, . . .

}
mod n. The

singleton {0} is called the zero coset. If Ct1 , . . . , Ctk are all nonzero cyclotomic
cosets then the set T = {t1, . . . , tk} of representatives is called a transversal.

Denote by s(n) the multiplicative order of 2 modulo n, i.e., the smallest posi-
tive number s, such that 2s ≡ 1 mod n. We see from Definition 1.3.3 that the
coset C1 has exactly s(n) elements. Moreover, if n = p is a prime then the size
of every nonzero cyclotomic coset is s(p). Indeed, for any t ∈ {1, . . . , p− 1} we
have

2st ≡ t mod p ⇔ 2s ≡ 1 mod p,

since t is coprime to p, hence |Ct| = |C1|.
Let α ∈ F2s(n) be a primitive n-th root of unity. Then for a generator polyno-

mial g(x) of a cyclic code C we have (see [41, Section 4.4])

g(x) = ∏
t

∏
i∈Ct

(
x− αi

)
, (1.2)

where t ranges over some subset of coset representatives.

22 CHAPTER 1. PRELIMINARIES

Denote by T =
⋃

t Ct a subset of Zn, such that all roots of g(x) are
(
αi)

i∈T.
Then T is called the defining set of the code C;

(
αi)

i∈T and
(
αj)

j 6∈T are called
zeros and nonzeros of C, respectively. (Note that the defining set T depends on
the chosen primitive root of unity.) The degree of the generator polynomial of C
equals |T| and the dimension of C is n− |T|.

Sometimes it is more convenient to use the generating idempotent of a code
instead of the generator polynomial, i.e., a unique polynomial e(x) that generates
the code and satisfies e2(x) = e(x). Any idempotent e(x) ∈ Rn generates some
cyclic code and has the form (see [41, Section 4.4])

e(x) = ∑
j∈J

∑
i∈Cj

xi, (1.3)

where J is some subset of cyclotomic coset representatives. The converse also
holds true, i.e., any element of Rn of the form (1.3) is an idempotent.

There is a particular set of permutations that maps idempotents onto idem-
potents.

Definition 1.3.4. Let n be an integer and let a be coprime with n. The function µa

defined on {0, 1, . . . , n− 1} by µa : i 7→ ia mod n is a permutation of coordinate
positions of a cyclic code of length n and is called a multiplier. A multiplier µa

can be regarded as acting on Rn by

f (x)µa = f (xa) (mod xn − 1).

Multipliers are essentially what is needed to establish whether two cyclic
codes are equivalent.

Lemma 1.3.5 ([64], [40]). Let C1 and C2 be cyclic codes of length n and let ϕ denote
the Euler ϕ-function. If gcd(n, ϕ(n)) = 1 then C1 and C2 are equivalent if and only if
there is a multiplier that maps the idempotent of C1 onto the idempotent of C2.

Corollary 1.3.6. Let C1 and C2 be binary cyclic codes of prime length p and let T be a
transversal. Then C1 and C2 are equivalent if and only if there is a multiplier µt with
t ∈ T that maps the idempotent of C1 onto the idempotent of C2.

Proof. Note that for a prime p we always have gcd(p, ϕ(p)) = 1. Thus, we can
apply Lemma 1.3.5. Moreover, due to the form (1.3) of the idempotent of a
binary cyclic code, it suffices to check the multipliers that have different actions
on the cyclotomic cosets.

First, we show that if a and b lie in the same coset then the multipliers µa and
µb have the same action on all the cyclotomic cosets modulo p. Let Ct and Cs be
two cyclotomic cosets and let a, b ∈ Ct, i.e., b ≡ 2xa mod p for some x. Suppose
that sa ≡ r mod p. Then

sb ≡ s · 2xa ≡ 2x · r mod p.

1.3. Cyclic and duadic codes 23

Thus, both sµa and sµb lie in the same coset Cr. Hence Csµa = Csµb = Cr.
Now, suppose that a and b lie in different cosets. Then µa and µb have differ-

ent actions on the cyclotomic cosets, in particular

C1µa = Ca 6= Cb = C1µb.

It follows from these two observations that multipliers that have different ac-
tions on the cyclotomic cosets are exactly the µt, where t ranges over a transver-
sal T . This completes the proof of the corrolary.

Lemma 1.3.7. Let C be a cyclic code of length n. Let σ be a cyclic shift of order n with
σ : i 7→ i + 1 mod n. Then the group G = 〈σ〉o 〈µ2〉 of order |G| = n · s(n) is a
subgroup of the automorphism group of C.

Proof. By definition the code C is invariant under the cyclic shift σ.
The multiplier µ2 maps the idempotent e(x) of the code C onto itself, since

e(x)µ2 = e(x2) = e(x). Hence C is invariant under the group G = 〈σ, µ2〉,
generated by σ and µ2. From Definition 1.3.4 it follows that

µ
j
2(i) = (µ2 ◦ · · · ◦ µ2)︸ ︷︷ ︸

j times

(i) = i · 2j mod n.

Thus, we see that the order of µ2 is s(n). In fact G is the semidirect product
〈σ〉o 〈µ2〉 (see also [41, Section 4.4]) and thus |G| = n · s(n).

In the present work we will be interested in cyclic codes with self-dual exten-
sions. By a result of Pless et al. [67] every such cyclic code is duadic.

Definition 1.3.8. Fix some primitive n-th root of unity and let S1 and S2 be
two subsets of {1, 2, . . . , n− 1}. Two cyclic codes C1 and C2 with defining sets
T1 = {0} ∪ S1 and T2 = {0} ∪ S2, respectively, are called even-like duadic codes if
S1 and S2 satisfy

S1 ∪ S2 = {1, 2, . . . , n− 1} and S1 ∩ S2 = ∅, (1.4)

and if there exists a multiplier µb such that

S1µb = S2 and S2µb = S1. (1.5)

The augmented codes D1 = C1 + 〈1〉 and D2 = C2 + 〈1〉 are called odd-like duadic
codes.

Note that even-like duadic codes are of dimension n−1
2 and odd-like codes —

of dimesion n+1
2 . It follows from the form (1.2) of the generator polynomial and

the definition of the defining set that each of the two sets S1 and S2 is a union
of nonzero cyclotomic cosets. We say that S1 and S2 that satisfy (1.4) and (1.5)

24 CHAPTER 1. PRELIMINARIES

form a splitting of n given by µb. In general the same splitting of n can be given
by different multipliers.

From [53] we know that duadic codes exist for lengths n ≡ ±1 mod 8. More
precisely, the primes pi that occur in the factorization n = pa1

1 · · · p
ar
r are all

of the form pi ≡ ±1 mod 8. However, we are mostly interested in the case
n ≡ −1 mod 8, when the extensions of (odd-like) duadic codes are doubly-even
(see Lemma 1.3.11). In this case idempotents of duadic codes can be easily
constructed.

Lemma 1.3.9 ([41, Theorem 6.1.5]). Let n ≡ −1 mod 8 and let S1 and S2 be a
splitting of n given by µb. Then

ei(x) = ∑
j∈Si

xj

with i = 1 and 2 are the generating idempotents of a pair of odd-like duadic codes.
Moreover,

e1(x)µb = e2(x) and e2(x)µb = e1(x) (1.6)

Remark 1.3.10. If e1(x) and e2(x) are the idempotents of odd-like duadic codes,
then 1 + e1(x) and 1 + e2(x) are the idempotents of even-like codes. Thus, equa-
tion (1.6) also holds for generating idempotents of even-like codes.

If generating idempotents of a pair of duadic codes satisfy (1.6), then we say
that µb gives a splitting for duadic codes. Note that it follows from (1.6) and
Lemma 1.3.5 that the two odd-like codes are equivalent. Clearly, the same also
holds for even-like codes.

Lemma 1.3.11 ([67]). If C is a cyclic code of length n with a self-dual extension, then C
is an odd-like duadic code. Moreover, if n is a prime of the form n ≡ −1 mod 8, then
the extension of every odd-like duadic code is self-dual and doubly-even.

Example 1.3.12. Let p ≡ −1 mod 8 be a prime with s(p) = p−1
2 . We want to

construct all cyclic codes of length p with self-dual extensions. By Lemma 1.3.11
we are interested in odd-like duadic codes. Apart from the trivial coset C0 = {0}
we have two cyclotomic cosets modulo p

C1 =
{

1, 2, 4, . . . , 2
p−1

2 −1
}

and C−1 = Zn \ (C0 ∪ C1) ,

each of which is of length s(p). Thus, there is only one splitting of p, namely
S1 = C1 and S2 = C−1, and it is given by µ−1. Hence there is only one pair of
odd-like duadic codes. It follows from Lemma 1.3.9 that their idempotents are

e1(x) = ∑
r∈S1

xi and e2(x) = ∑
j∈S2

xj.

1.4. Weight enumerators of self-dual codes 25

Since p is a prime, it follows that Zp is the field Fp. An element x ∈ F∗p
is called a square, or quadratic residue, if there exists some element a ∈ F∗p with
x = a2; otherwise x is called a nonsquare (quadratic nonresidue). If α is a p-th
root of unity, then x ∈ F∗p is a square if and only if x is an even power of α.
Thus, half of the elements of F∗p are squares and the other half — nonsquares.
In case p ≡ −1 mod 8 the element 2 is a square, and so are all the elements of C1.
Consequently, we can write the idempotents e1(x) and e2(x) of the two odd-like
duadic codes as follows

e1(x) = ∑
r∈Q

xi and e2(x) = ∑
j∈N

xj, (1.7)

where Q and N denote the sets of squares and nonsquares in Fp, respectively.
In general, duadic codes with idempotents e1(x) or e2(x) given by (1.7) (or

with idempotents 1 + e1(x) or 1 + e2(x)) are called quadratic residue codes. Thus,
in the case when p ≡ −1 mod 8 is a prime with s(p) = p−1

2 , the two odd-
like quadratic residue codes are the only cyclic codes of length p with self-dual
extensions.

We finish this section with the definition and some properties of the Reed-
Muller codes.

Definition 1.3.13. Let P1, P2, . . . , Pn be the n = 2m points of Fm
2 . For any inte-

ger r with 0 ≤ r ≤ m let F2[x1, . . . , xm]r be the polynomials in F2[x1, . . . , xm]

of degree r or less. Then the rth order binary Reed-Muller code R(r, m) of
length n = 2m is defined as follows

R(r, m) = { (f (P1), . . . , f (Pn)) | f ∈ F2[x1, . . . , xm]r} .

Lemma 1.3.14 (see [57, Chapter 13]). Let m ≥ 3 be odd. Then the Reed-Muller
code C = R(m−1

2 , m) is a [2m, 2m−1, 2
m+1

2] Type II code, and Aut(C) = AGL(m, 2).
Moreover, C is equivalent to an extended cyclic code.

1.4 Weight enumerators of self-dual codes

Let C be a linear [n, k, d] code over Fq. In Section 1.1 the weight of a codeword c
in C is defined as the number of its nonzero components. The weight distribution
of C is the collection (Ai)0≤i≤n, where Ai denotes the number of codewords of
weight i in C. The homogeneous polynomial

WC(x, y) =
n

∑
i=0

Aixn−iyi

is called the weight enumerator of the code C. The minimum distance d is the
smallest positive i, for which the number Ai is nonzero.

26 CHAPTER 1. PRELIMINARIES

The weight distribution of the dual code C⊥ can be found via the MacWilliams
transform [57, Chapter 5, Section 2]:

WC⊥(x, y) =
1
|C|WC (x + y, x− (q− 1)y) . (1.8)

Let C be a self-dual code of one of Types I to IV. Using invariant theory
Gleason [30] (and later MacWilliams et al. [55]) deduced restrictions on the
weight enumerator of C. In particular, he showed that the weight enumerator is
a polynomial in suitable polynomials f (x, y) and g(x, y).

Theorem 1.4.1 ([30], [55]). Let C be a self-dual code of length n over Fq with q ≤ 4
and let

g1(x, y) = x2 + y2,

g2(x, y) = x8 + 14x4y4 + y8,

g3(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24,

g4(x, y) = y4 + 8x3y,

g5(x, y) = y12 + 264x6y6 + 440x9y3 + 24x12,

g6(x, y) = y2 + 3x2,

g7(x, y) = y6 + 45x4y2 + 18x6.

(i) If C is of Type I, then

WC(x, y) =
bn/8c

∑
i=0

cig1(x, y)
n
2−4ig2(x, y)i.

(ii) If C is of Type II, then

WC(x, y) =
bn/24c

∑
i=0

cig2(x, y)
n
8−3ig3(x, y)i.

(iii) If C is of Type III, then

WC(x, y) =
bn/12c

∑
i=0

cig4(x, y)
n
4−3ig5(x, y)i.

(iv) If C is of Type IV, then

WC(x, y) =
bn/6c

∑
i=0

cig6(x, y)
n
2−3ig7(x, y)i.

In all cases ci are rationals and ∑i ci = 1.

An immediate corollary of Theorem 1.4.1 is the restriction on the length of a
self-dual code.

1.4. Weight enumerators of self-dual codes 27

Corollary 1.4.2. Let C be a self-dual code of length n over Fq with q ≤ 4. Then

(i) 2 | n if C is of Type I or Type IV,

(ii) 4 | n if C is of Type III,

(iii) 8 | n if C is of Type II.

Mallows and Sloane [59] and MacWilliams et al. [56] used Theorem 1.4.1 to
derive upper bounds on the minimum distance of self-dual codes of Types II,
III, and IV (see Theorem 1.1.5). (Recall that codes that achieve the bound of The-
orem 1.1.5 are called extremal.) They also showed that the weight enumerators
of extremal codes of Types II, III, and IV are unique. Moreover, for sufficiently
large lengths the coefficients of the weight enumerator may become negative,
thus implying the nonexistence of respective codes.

Actually, the bounds in Theorems 1.1.10 and 1.1.11 come from the fact that
the weight enumerator coefficients must be non-negative in order for a code to
exist.

In Chapter 3 we will use the following formulas for the number Ad of code-
words of minimum weight d in an extremal Type II code.

Theorem 1.4.3 ([59]). Let C be an extremal Type II code of length n and minimum
distance d. Then the coefficient Ad of the weight enumerator of C may be found as
follows (

n
5

)(
5m− 1
m− 1

)/(
4m + 4

5

)
if n = 24m,

1
4

n(n− 1)(n− 2)(n− 4)
(5m)!

m!(4m + 4)!
if n = 24m + 8,

3
2

n(n− 2)
(5m + 2)!

m!(4m + 4)!
if n = 24m + 16.

Rains [70] obtained the bound in Theorem 1.1.5 for Type I codes using restric-
tions that come from the weight distribution of a special nonlinear code, called
the shadow, which is associated with every Type I code.

Definition 1.4.4. Let C be a self-dual code of Type I. Furthermore, let C0 denote
the subcode of C that consists of all codewords, whose weights are multiples
of 4. If C2 = C \ C0 then the shadow S of the code C consists of all vectors u ∈ Fn

2
such that

(u, v) = 0 for all v ∈ C0,

(u, v) = 1 for all v ∈ C2.
(1.9)

Note that C⊥0 consists of the union of four cosets of C0, say, C0, C1, C2 and C3.
Since C = C0 ∪ C2 then from (1.9) and self-duality of C we get

S = C⊥0 \ C = C1 ∪ C3.

28 CHAPTER 1. PRELIMINARIES

From (1.9) it also follows that a sum of any two vectors in S lies in C.
The concept of shadow was first introduced by Ward [76]; Conway and

Sloane [20] used it to find constraints on Type I codes. They showed that the
weight enumerators of a Type I code and its shadow are connected by a trans-
formation, similar to (1.8), and were able to deduce a number of restrictions on
the weight distribution of the shadow.

Theorem 1.4.5 ([20]). Let C be a Type I [n, n
2 , d] code and let S be its shadow. If

WS(x, y) =
n

∑
j=0

Bjxn−jyj

is the weight enumerator of the shadow then

WS(x, y) =
1
|C|WC(x + y, i(x− y)), (1.10)

where i =
√
−1. Furthermore, the coefficients Bj, 0 ≤ j ≤ n, satisfy the following

properties:

(i) Bj = Bn−j,

(ii) Bj = 0 unless j ≡ n
2 mod 4,

(iii) B0 = 0 and Bj ≤ 1 for j < d/2.

Ever since the original paper of Conway and Sloane [20] the shadow is widely
used for studying extremal Type I codes. For instance, by a result of Rains [70]
extremal Type I codes do not exist for lengths a multiple of 24.

Theorem 1.4.6 ([70]). Let C be an extremal self-dual code of length n ≡ 0 mod 24.
Then C is of Type II.

The ultimate goal of the research of extremal Type I codes is to derive an ex-
plicit bound on the length of codes, similar to those in Theorems 1.1.10 and 1.1.11.
However, the best that is achieved so far are bounds on codes, whose shadow
has prescribed minimum weight. The minimum weight of a shadow is defined
as the smallest positive j, for which the coefficient Bj of the weight enumerator
WS(x, y) of the shadow is positive.

Bachoc and Gaborit [3] found an upper bound on the minimum weight of
the shadow of a given Type I code.

Lemma 1.4.7 ([3]). Let C be a Type I code with minimum distance d and minimum
weight s of the shadow. Then

2d + s = n
2 + 8, if n ≡ 22 mod 24 and d = 4

⌊ n
24

⌋
+ 6,

2d + s ≤ n
2 + 4, otherwise.

1.4. Weight enumerators of self-dual codes 29

An
[
n, n

2 , d
]

self-dual code C of Type I is called s-extremal if the bound in
Lemma 1.4.7 is reached, i.e., if 2d + s = n

2 + 4 (or 2d + s = n
2 + 8 in the case

when C is extremal of length n ≡ 22 mod 24).

Lemma 1.4.8 ([3]). Let C be an
[
n, n

2 , d
]

Type I s-extremal code. Then the weight
distributions (Ai)0≤i≤n of C and

(
Bj
)

0≤j≤n of its shadow are uniquely determined. In
particular,

Ad =
n
d ∑

j,k∈N

j+k= d
2−1

(−1)j
(n

2 − 2d + j
j

)(
d + k− 1

k

)
.

Apart from s-extremal codes in Chapter 3 we will consider so-called codes
with minimal shadow. These are self-dual codes of Type I whose shadow has the
smallest possible minimum weight.

Definition 1.4.9 (see [12]). Let C be a Type I code of length n = 24m + 8`+ 2r,
where ` = 0, 1, 2 and r = 0, 1, 2, 3, and let S be the shadow of C. Then C is called
a code with minimal shadow if for the minimum weight s of S we have

s = r, if r = 1, 2, or 3,

s = 4, if r = 0.

Chapter 2

Automorphisms of extremal codes

2.1 Known extremal Type II codes and their auto-
morphisms

As we know from Theorem 1.1.10 (a), the possible length of an extremal Type II
code is of the form n = 24m + 8`, where ` ∈ {0, 1, 2} and m < 154 if ` = 0,
m < 159 if ` = 1, and m < 164 if ` = 2. Despite the fact that the length might be
as large as 3928, only extremal codes of length up to 136 are actually known to
exist.

Here is a list of all lengths, for which extremal Type II codes are constructed
(see [72, Section 12] and [35])

8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 112, 136 (2.1)

By examining the list one notices that the first gaps occur at lengths 72 and 96.
In fact, the existence of an extremal [72, 36, 16] code is a long standing question,
posed by Sloane [73] in 1973. In general, extremal codes of length a multiple
of 24 are of particular interest, mainly because of Theorem 1.1.8, which tells that
these codes hold 5-designs. Another point of interest is that by Theorem 1.4.6
extremal self-dual codes of length n = 24m are always doubly-even.

However, there are only two examples of extremal [24m, 12m, 4m + 4] codes.
For m = 1 it is the famous Golay code with the 5-transitive Mathieu group M24

as the automorphism group [31] (see also [57, Chapter 20]). The uniqueness (up
to equivalence) of the [24, 12, 8] code was proved by Pless [65]. For m = 2 the
extended quadratic residue code is the only extremal code. Its automorphism
group is the 2-transitive projective special linear group PSL(2, 47). There was
no proof of the uniqueness of this code until a lengthy computer search by
Houghten et al. [37].

Although neither is a self-dual [72, 36, 16] code constructed, nor is its non-
existence proven, a lot may be said about the automorphism group of a putative
code. Due to results of Conway, Pless, Thompson ([19], [66], [68]), and Huffman

32 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

and Yorgov [42] it was already known in 1980s that the possible prime divisors
of the group order are 2, 3, 5 or 7. After a period of more than fifteen years with
no significant results the next step was taken in the beginning of 2000s. Bouyuk-
lieva [6, 7] and Doncheva et al. [26] determined the possible cycle structures (or
types, see Section 2.2) of automorphisms of these orders. They showed that au-
tomorphisms of orders 2 and 3 operate fixed point freely, and of orders 5 and 7
have exactly 2 fixed points. This was a turning point in the study of the automor-
phism group. It was then possible to prove statements about the group structure
and find bounds on the group order. First, Bouyuklieva et al. [11] showed that
the group is solvable. Then, O’Brien and Willems [63] proved that the group
order is smaller than or equal to 36. Further refinements were recently made
by Nebe [62], Feulner and Nebe [29], Yankov [80], and Borello [4]. In particular,
Feulner and Nebe showed by a lengthy computer search that 7 does not divide
the group order. To sum up, the state of the art is the following: the order of
the automorphism group for a putative self-dual [72, 36, 16] code is either 5 or a
divisor of 24.

As far as a putative [96, 48, 20] code is concerned, Doncheva [23] showed
that only 2, 3, and 5 can occur as prime divisors of the automorphism group
order. The possible cycle structures were determined by Bouyuklieva [6] and De
la Cruz [21]: automorphisms of order 2 have no fixed points, of order 5 have
exactly 6 fixed points, and of order 3 have either 6 fixed points or operate fixed
point freely. Moreover, if all automorphisms of order 3 are fixed-point-free then
either the group is solvable and the order is 15, 30, 240, 480, or divides 25 · 3 or
25 · 5, or the group is the alternating group A5 of order 60 [21].

Little was known until recently about a putative [120, 60, 24] code. Bouyuk-
lieva [6] showed that automorphisms of order 2 have either 24 or no fixed points.
De la Cruz [21] reduced the number of possible prime divisors of the automor-
phism group order and determined their cycle structures. He also proved that
the order of the group is 2a · 3b · 5c · 7d · 19e · 23 f · 29g, where b, c, d, e, f , g ∈ {0, 1}.

As we can see, it is an extremely difficult problem to prove the existence (or
nonexistence) of an extremal code of length a multiple of 24. However, there is a
lot of evidence suggesting that if such codes exist, the respective automorphism
groups are likely to be comparatively small.

Unfortunately, the list in (2.1) provides little information about extremal
codes. For instance, the following questions may arise while considering the
list.

1. For what lengths in (2.1) are there examples of codes with large (e.g., mul-
tiply-transitive) automorphism groups or automorphisms of large prime
order?

2. What families of codes provide examples of extremal codes for more than
one entry of the list in (2.1)?

2.1. Known extremal Type II codes and their automorphisms 33

n d p | |Aut(C)| Number of codes

8 4 2, 3, 7 = 1 (Hamming)
16 4 2, 3, 5, 7 = 2
24 8 2, 3, 5, 7, 11, 23 = 1 (Golay)
32 8 2, 3, 5, 7, 31 = 5
40 8 2, 3, 5, 7, 19 ≥ 1000
48 12 2, 3, 23, 47 = 1 (xQR)
56 12 2, 7, 13 ≥ 166
64 12 2, 31 ≥ 3270
80 16 2, 3, 5, 7, 13, 19, 79 ≥ 15
88 16 2, 3, 7, 11, 43 ≥ 470

104 20 2, 3, 13, 17, 103 ≥ 1 (xQR)
112 20 2, 7 ≥ 1 ([35])
136 24 2, 3, 11, 67 ≥ 1 (QDC)

Table 2.1: Primes that can occur as a factor of the automor-
phism group order for some extremal

[
n, n

2 , d
]

Type II code C

Table 2.1 may be helpful in approaching these questions.
In the first column we give lengths n from (2.1); the corresponding minimum

distance d (determined by Theorem 1.1.5) of extremal Type II codes is in the se-
cond column. In the third we list all possible primes p that divide the automor-
phism group order for some extremal code of given length. In the last column
we give the number (up to equivalence) of extremal codes of given length. The
number is exact if it is preceded with the equality sign (=). With the “greater or
equal” sign (≥) we give the number of extremal codes that where constructed.
Note that in such cases there might actually be more codes. If there is only one
known code for given length, we also give its name. Thus, a unique [8, 4, 4] code
is the Hamming code. We already mentioned the Golay code of length 24 and
the extended quadratic residue code (abbreviated xQR in the table) of length 48.
The abbreviation QDC stands for the quadratic double circulant code (see be-
low).

Table 2.1 is based on the information from [72, Section 12.1] with additions
from [83] and [14] for n = 40, [36] and [82] for n = 56, [32] and [81] for n = 64,
[24], [33], and [84] for n = 80, [33] for n = 88, and [35] for the [112, 56, 20] code.

As one can notice from the table the only prime p > n
2 , which occurs in the

third column, is p = n− 1. We distinguished it with bold font in the table. Also,
there can only be one prime p with n

3 < p < n
2 . This prime is p = n

2 − 1 and it
appears in italic font in the table.

As we will show in Section 2.2, this does not occur by chance and is caused
by a restriction on the possible types of automorphisms that are admitted by

34 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

extremal codes (see Theorem 2.2.8).
Note that a code accepting an automorphism of order n − 1 is equivalent

to an extended cyclic code, as we will show in Lemma 2.2.3. Among codes
that are invariant under an automorphism of order n

2 − 1 we distinguish so-
called bordered double circulant codes. A bordered double circulant code has
generator matrix of the form

0 1 · · · 1 1
1

In/2
... Q
1
1

 , (2.2)

where Q is an
(n

2 − 1
)
×
(n

2 − 1
)

circulant matrix, i.e., the (i + 1)-st row of Q is a
cyclic shift of the i-th row.

Among extended cyclic codes extended quadratic residue codes are of par-
ticular interest. They are extremal for every length n from the list in (2.1), such
that n = p + 1, where p is a prime. The ones of lengths 8, 24, 48, and 104 are the
only known extremal codes of those lengths. Extended quadratic residue codes
are remarkable codes with 2-transitive automorphism group PSL(2, p) (see [38]).
They were studied by a number of researches, Gleason, Assmus and Mattson [2],
Karlin and MacWilliams [49] to name a few.

Closely related to quadratic residue codes are so-called quadratic double cir-
culant codes, a subclass of bordered double circulant codes. They provide ex-
amples of extremal Type II codes for lengths 8, 24, 40, 88, and 136, the latter
being the largest known extremal code. Quadratic double circulant codes exist
for lengths n = 2q + 2 for prime q and are invariant under the group PSL(2, q).

We provide a complete classification of both extended quadratic residue and
quadratic double circulant extremal Type II codes in Section 2.3.

Well-studied Reed-Muller codes also provide examples of extremal codes.
These are the first order [8, 4, 4] code (the Hamming code) and the second order
[32, 16, 8] code. From Lemma 1.3.14 we know that these codes are invariant
under 3-transitive groups AGL(3, 2) and AGL(5, 2), respectively. However, since
the minimum distance of Reed-Muller codes is known (see Lemma 1.3.14), one
can easily verify that no other code of this family is extremal. In Section 2.7 we
classify affine-invariant codes, a generalization of Reed-Muller codes.

Thus, as far as extremal Type II codes with multiply-transitive groups are
concerned, there are exactly 7 of them known: the [8, 4, 4] Hamming code,
the [24, 12, 8] Golay code, the second order [32, 16, 12] Reed-Muller code and
extended quadratic residue codes of lengths 32, 48, 80, and 104. As one of the
main results of the thesis, we prove in Section 2.8 that there are no other such
codes, except possibly a code of length 1024.

2.2. Types of automorphisms of binary extremal codes 35

2.2 Types of automorphisms of binary extremal codes

As we discussed in the previous section, for a given automorphism of an ex-
tremal code its cycle structure is of particular interest.

Definition 2.2.1. We say that a permutation σ ∈ Sn of prime order p is of
type p -(c, f) if it consists of c cycles and f fixed points, so that n = pc + f .

We want to remark that all elements of the same type are conjugate in Sn.

Example 2.2.2. Let p be a prime and let C be a binary self-dual code of length
n = p + 1 that is invariant under an automorphism σ of order p. In this case
there is only one possibility: σ is of type p -(1, 1) and has exactly one cycle of
length p and one fixed point. It follows from Lemma 2.2.3 that C is equivalent
to an extended cyclic code.

Lemma 2.2.3. Let C be a self-dual code of length n = p + 1, where p is a prime. Let
furthermore σ ∈ Sn be an automorphism of C of type p -(1, 1). Then C is equivalent to
an extended cyclic code.

Proof. Denote by σ0 a permutation in Sn such that i 7→ i + 1 mod p for all
0 ≤ i ≤ p− 1, and p is a fixed point of σ0. Let τ ∈ Sn be such that τ−1στ = σ0.
Furthermore, let C′ be a code that is equivalent to C, where the equivalence is
given by τ, i.e., C′ = Cτ, or C = C′τ−1. As σ is an automorphism of C, we may
write C = Cσ. Thus we have

C′τ−1 = C = Cσ = C′τ−1σ,

and it follows that
C′ = C′τ−1στ = C′σ0.

In other words, σ0 is an automorphism of C′. It follows from Definition 1.3.1
that C′ with the last coordinate removed is a cyclic code.

Finally, we stress that there is only one way to extend a code in order to
obtain a self-dual code, since each codeword of the extended code should be
orthogonal to itself. Note that in the binary case a vector is orthogonal to itself
if and only if it is even-like.

Remark 2.2.4. A similar result holds when the length of the code in question is
not a prime. A self-dual code C of length n, invariant under an automorphism
σ ∈ Sn, which consists of a single cycle of order n − 1, is equivalent to an ex-
tended cyclic code. The proof remains exactly the same as for Lemma 2.2.3.

The following theorem of Yorgov [82] has proven to be of immense impor-
tance in the research of extremal codes.

36 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

Theorem 2.2.5 ([82]). Let C be a binary self-dual [n, k, d] code and let σ ∈ Aut(C) be
of type p -(c, f), where p is an odd prime. If f > c then

f ≥
f−c

2 −1

∑
i=0

⌈
d
2i

⌉
.

Theorem 2.2.5 is one of the few theoretical tools that help to establish cycle
structures of automorphisms.

Corollary 2.2.6. Let p > 23 be a prime and let C be an extremal Type II code of length
n = 2p+ 2. Further assume that a permutation τ of order p leaves the code C invariant.
Then τ is of type p -(2, 2).

Proof. Recall from Corollary 1.4.2 that the length n is a multiple of 8 and from
Theorem 1.1.10 that n is bounded by 3928.

Note that there are two possibilities for the type of τ: p -(2, 2) and p -
(
1, n

2 + 1
)
.

However, with Theorem 2.2.5 and a simple computation we can rule out the se-
cond possibility for all n ≤ 3928.

Remark 2.2.7. Recall from Table 2.1 that all extremal Type II codes of lengths 8,
16, 24, 32 and 48 are known. The only other case, not touched upon by Corol-
lary 2.2.6, is n = 40. However, it follows from [39, Theorem A.3] that there are
no extremal Type II codes of length 40 with automorphisms of type 7 -(1, 9).

Despite the fact that Theorem 2.2.5 is a powerful tool of determining the
possible cycle structures of automorphisms of binary self-dual codes, it is not
particularly easy to apply. Together with Bouyuklieva and Willems we have
proved the following easy-to-handle result.

Theorem 2.2.8. Let C be a binary extremal self-dual code of length n ≥ 48, invariant
under an automorphism σ of type p -(c, f), where p ≥ 5 is a prime. Then c ≥ f .

Proof. The lengthy proof of Theorem 2.2.8 can be found in [9].

Remark 2.2.9. Notice that with Theorem 2.2.8 one does not need to do any com-
putations at all to prove Corollary 2.2.6.

Remark 2.2.10. Let us remark that the restriction on the length of a code in The-
orem 2.2.8 is essential. That is, there exist codes of length less than 48 that
admit automorphisms of types p -(c, f) with f > c. Specifically, there are Type II
codes of length 40 with automorphisms of type 3 -(6, 22) (Bouyuklieva [8]) and
5 -(4, 20) (Yorgov [45]). As for Type I codes, there are those of length 42 with au-
tomorphisms of types 5 -(4, 22) or 3 -(6, 24) (both [8]) and of length 44 with au-
tomorphisms of type 11 -(2, 22) (Yorgov and Russeva [46]), 5 -(4, 24), or 3 -(6, 26)
(both [8]). We also refer the reader to Tables 2 and 3 in [39] and to Table II in [9].

On the other hand, there are no known extremal codes of length n ≥ 48 that
have an automorphism of order 3 with the number of fixed points exceeding the

2.3. Extremal Type II codes arising from quadratic residues 37

number of cycles. However, to show that automorphisms of types, say, 3 -(14, 26)
or 3 -(16, 20) can not occur for extremal Type I codes of length 68 seems to be a
difficult problem (see [39] and [9]).

Corollary 2.2.11. Let C be an extremal self-dual code of length n ≥ 48 with an auto-
morphism σ of type p -(c, f), where p > n

2 is a prime. Then p = n− 1, c = f = 1.
Moreover, if C is doubly-even then n = 24m + 8`, where ` ∈ {0, 1} and m ≥ 2.

Proof. It follows from Theorem 2.2.8 that c ≥ f . Further, since p > n
2 and

n = pc + f , the only possibility is p = n− 1, c = f = 1.
Let C be of Type II. From Corollary 1.4.2 we known that n is a multiple of 8.

Thus, we have n = 24m + 8`, where ` ∈ {0, 1, 2}. The case n = 24m + 16 can not
occur, since n− 1 = 24m + 15 is divisible by 3 and, hence, is not a prime. Finally
m ≥ 2 since n ≥ 48.

Corollary 2.2.11 explains why there is only one prime p greater than n
2 ,

namely p = n − 1, in the third column of Table 2.1. By this result and by
Lemma 2.2.3, the investigation of extremal Type II codes that are invariant un-
der automorphisms of large prime orders reduces to the case of extended cyclic
codes.

However before we proceed with the classification of binary extended cyclic
codes, in the next section we introduce a method of effective search for small
weight codewords (see Algorithm 2.3.5). We also apply this method to classify
extremal codes that arise from quadratic residues.

2.3 Extremal Type II codes arising from
quadratic residues

In this section we classify extremal Type II codes that arise from quadratic
residues. These include quadratic residue codes, generalized quadratic residue
codes, and quadratic double circulant codes.

We already considered quadratic residue codes in Example 1.3.12. For rea-
der’s convenience below we give a formal definition.

Definition 2.3.1. A duadic code C is called a quadratic residue code if the gen-
erating idempotent of C is one of the following

∑
i∈Q

xi, 1 + ∑
i∈Q

xi, ∑
j∈N

xj, or 1 + ∑
j∈N

xj,

where Q and N denote the sets of squares and nonsquares in F∗p respectively. In
other words, the sets Q and N form the corresponding splitting of p.

38 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

Quadratic residue codes exist for prime lengths p of the form p ≡ ±1 mod 8.
In this section we will only consider the case p ≡ −1 mod 8, since in this case
extended quadratic residue codes are of Type II (see [57, Chapter 16]).

It follows from Theorem 1.1.10 (a) that there exist more than a hundred of ex-
tended quadratic residue codes that might potentially be extremal. To establish
the minimum distance of a code of large length (say, n > 400) is an impossible
task even for a computer. However, if we recall Section 2.1, the only extended
quadratic residue codes that are known to be extremal are of lengths n = 8,
24, 32, 48, 80, and 104. One can verify that extended quadratic residue codes
of lengths 72 or 128 are not extremal. Thus, it is reasonable to expect that no
other quadratic residue codes, apart from the aforementioned six, are extremal.
The task of proving the non-extremality of a code is, in fact, much easier than
finding the exact minimum distance. Indeed, one needs only to find a codeword
of weight strictly less than the bound in Theorem 1.1.5.

Of course, there is a number of methods of finding low weight codewords in
quadratic residue codes: deterministic algorithms of Karlin and MacWilliams [49]
and Lam et al. [61] and a probabilistic approach of Leon [52], to name a few. Un-
fortunately, for some larger lengths all of these algorithms fail to yield results in
reasonable time.

The main idea behind all of these algorithms is to search for low weight
codewords in a suitable subcode instead of the whole code. The problem is then,
however, to choose the subcode in such a way that a codeword of desired weight
should lie in it. Below we desribe a method of choosing a suitable subcode for
codes with nontrivial automorphism groups.

We want to remark here that the automorphism group of quadratic residue
codes was (at least, in part) known for a long time. It is one of the main reasons
of attention drawn to quadratic residue codes over the last decades.

Lemma 2.3.2 (Gleason and Prange, Huffman). Let C be an extended quadratic
residue code of length n = p + 1 for p ≡ −1 mod 8. Then Aut(C) = PSL(2, p),
which is of order 1

2(p− 1)p(p + 1), apart from the cases p = 7 and 23, when Aut(C)
is even bigger.

Remark 2.3.3. The original theorem of Gleason and Prange (see [57, Section 16.5])
stated only that PSL(2, p) ≤ Aut(C). Using the classification of 2-transitive
groups (see [15]) Huffman [38] proved that Aut(C) can not be bigger.

Remark 2.3.4. The two exceptions, namely for p = 7 and p = 23, may be ex-
plained by the equivalence of the [8, 4, 4] code to the first order Reed-Muller
code (the group is AGL(3, 2)) and the [24, 12, 8] code to the extended Golay code
(with the group M24).

The idea of our method is to choose the subgroup of the automorphism
group first and then take the subcode that is fixed under the chosen subgroup.

2.3. Extremal Type II codes arising from quadratic residues 39

Algorithm 2.3.5 (Effective search for a codeword of small weight).

Input. A code C invariant under the group G,
a bound d on the weight.

Output. A codeword of C of weight less than d.

Step 1. Choose the subgroup H of G of small order.

Step 2. Take the subcode CH consisting of codewords of C fixed under H:

CH = Fix(C, H) = {c ∈ C | cσ = c for all σ ∈ H} . (2.3)

Step 3. Search for a codeword of weight less that d in CH.

Remark 2.3.6. We do not have a good recipe how to choose the subgroup H in
Step 1 of the algorithm. In fact, this is somewhat tricky. On the one hand, the
resulting subcode CH should be small; on the other hand, CH should contain
codewords of small enough weight.

However, for codes of length between 1000 and 4000 subgroups H of order
5 ≤ |H| ≤ 30 appear to be a good choice.

Remark 2.3.7. The size of CH depends not only on the order of H, but also on the
structure.

With Algorithm 2.3.5 at hand we are able to prove one of the main results of
the thesis.

Theorem 2.3.8. Let C be an extremal extended quadratic residue code of length n. Then
n = 8, 24, 32, 48, 80, or 104.

Proof. Let n denote the length of the code C. Since C is a self-dual extended
quadratic residue code, we have n = p + 1, where p is a prime of the form
p ≡ −1 mod 8 (see [57, Chapter 16]). Moreover, it follows from Lemma 1.3.11
that C is of Type II. We may write n = 24m + 8` for ` ∈ {0, 1}, since n− 1 is not
a prime if ` = 2. By Theorem 1.1.10 (a) an extremal code of this length may exist
if m ≤ 154 for ` = 0 and m ≤ 159 for ` = 1.

From Section 2.1 we known that extended quadratic residue codes of lengths
n = 8, 24, 32, 48, 80, and 104 are extremal.

Let C be an extended quadratic residue code of length n = 24m, where
5 ≤ m ≤ 11, or of length n = 24m + 8, where 3 ≤ m ≤ 16. For every such C we
can find a codeword of weight smaller than d = 4m + 4 via direct enumeration.
It follows, that all codes of these lengths are not extremal.

For codes of larger lengths we apply Algorithm 2.3.5. The subgroup H that
we choose depends on the length of the code in question. If n = 24m with
11 < m ≤ 78, we take H = Z4, the cyclic group of order 4. If n = 24m + 8,
where 16 < m ≤ 78, we take H = Z6, the cyclic group of order 6. For codes with
m > 78 we take the Sylow-2 subgroup of PSL(2, p) as H. In all cases we have

40 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

dim CH ≤ 235. In every one of the subcodes CH we find a codeword of weight
smaller than d = 4m + 4. Thus, none of the corresponding extended quadratic
residue codes C is extremal.

All computations are carried out with Magma [5].

We want to illustrate the work of Algorithm 2.3.5, vital for proving Theo-
rem 2.3.8, on some examples.

Example 2.3.9. Let C be an extended quadratic residue code of length n = 1872
= 24 · 78. Note that we construct the code C by forming the idempotent and
the generator matrix explicitly. This approach proves to be faster than using the
built-in Magma function QRCode. We apply Algorithm 2.3.5 to find a codeword
in C of weight strictly smaller than d = 316.

In the first step we choose a subgroup H = Z6 (the cyclic group of or-
der 6) of G = PSL(2, 1871). To generate the group we find an element of or-
der 6 in G via direct enumeration. The next step is to generate the subcode
CH = Fix(C, H). This is done in Magma with the built-in function Fix. The re-
sulting code CH is of dimension 234 = n/8. In CH with the built-in Magma

function WordsOfBoundedWeight, which does the enumeration, we find a
codeword of weight 312 < d. Thus C is not extremal.

Example 2.3.10. Let C be an extended quadratic residue code of length n = 3824
= 24 · 159 + 8. We are searching for a codeword of weight less than d = 640.

To generate a subgroup H of G = PSL(2, 3823), which in this case is a Sy-
low 2-subgroup of G of order 24 = 16, we use the built-in Magma function
SylowSubgroup. The subcode CH is of dimension 120, which is slightly greater
than n/32. We prove the non-extremality of C by finding a codeword of weight
608 < d in CH.

The Magma source code for the examples is given in Listings A.1 and A.2 in
Appendix A.

At the end of this section we classify other extremal Type II codes that are
related to quadratic residues codes.

Generalized quadratic residue codes were introduced by Ward [75] and Ca-
mion [16] as group codes for abelian groups. For an elementary description
we refer the reader to van Lint and MacWilliams [74]. Here we will just define
binary generalized quadratic residue codes by giving their generator matrix.

Definition 2.3.11 ([74]). Let q = pm for a prime p, such that 2 is a square mo-
dulo p, and let α be a primitive element of Fq. Further, let U and V denote the
sets of nonzero squares and nonsquares of Fq and let e ∈ F

q
2 be a vector with

components

ei =

q+1

2 , if i = 0,
c0, if i ∈ U,
c1, if i ∈ V

(2.4)

2.3. Extremal Type II codes arising from quadratic residues 41

for c0 6= c1 ∈ F2. A code is called a generalized quadratic residue code if its
generator matrix M has the following form. Label the rows and columns of M
by the elements 0, 1, α, α2, . . . , αq−2 of Fq. Then the first row of M contains the
coordinates of e from (2.4) and the entry in the position

(
αi, αj) equals that in the

position
(
0, αj − αi).

For each q = pm there are two generalized quadratic residue codes: one corre-
sponding to the squares (with the idempotent e given by (2.4) with c0 = 1, c1 = 0)
and one — to the nonsquares (with c0 = 0, c1 = 1). The two codes are equivalent.

Lemma 2.3.12 ([74]). Let q = pm and let C be an extended generalized quadratic
residue code of length q + 1. If m is odd and p ≡ −1 mod 4 then the code C is self-dual
of Type II. Moreover, C is invariant under the group PSL(2, q).

Notice that a generalized quadratic residue code of prime length q = p1 = p,
where p ≡ ±1 mod 8, is just a usual quadratic residue code (see Definition 2.3.1).

There is only one prime power q = pm with p ≡ −1 mod 4 and odd m > 1,
such that q + 1 satisfies the bound of Theorem 1.1.10 (a), namely, q = 343 = 73.
Thus, the classification of extremal extended generalized quadratic residue codes
is reduced to determining whether the code of length 344 is extremal.

Theorem 2.3.13. The [344, 172] extended generalized quadratic residue code has mini-
mum distance d ≤ 44 and is not extremal.

Proof. Let C be the [344, 172] extended generalized quadratic residue code. Via
direct enumeration with Magma we find that C contains a codeword of weight 44.
From Theorem 1.1.5 we known that an extremal code of length 344 should have
minimum distance 60. Thus, C is not extremal.

We already mentioned in Section 2.1 that a great number of known extremal
Type II codes are bordered double circulant (see also [36], [32], and [33]). Among
these codes of particular interest are so-called quadratic double circulant codes,
which provide the largest known example of an extremal code.

We classify extremal quadratic double circulant codes in a similar way as we
did for quadratic residue codes.

Definition 2.3.14. A code of length n = 2p + 2, where p ≡ 3 mod 8 is a prime,
is called a quadratic double circulant code if its generator matrix is of the form

0 1 · · · 1 1
1

In/2
... Q
1
1

 ,

where Q is a p× p circulant matrix, corresponding to quadratic residues. This
means that the first row of Q has 1 in the position i, 0 ≤ i ≤ q− 1, if and only if
i = 0 or i is a square in F∗p.

42 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

It can be seen from the form of the generator matrix that quadratic dou-
ble circulant codes are always self-dual and doubly-even. As we know from
Section 2.1, for p = 3, 11, 19, 43, and 67 quadratic double circulant codes are
extremal.

A quadratic double circulant code of length n = 2p + 2 is invariant under the
group PSL(2, p)×Z2 (see [57, Chapter 16]). Note that PSL(2, p) acts simultane-
ously on the first p + 1 positions and the second p + 1 positions of a codeword.
The Z2 part means that the code remains invariant under the interchanging of
the left and right parts of the generator matrix.

We may now apply Algorithm 2.3.5 to find codewords of small weight in
codes of length up to n ≤ 3928. Thus, we prove the following result.

Theorem 2.3.15. Let C be an extremal quadratic double circulant code of length n. Then
n = 8, 24, 40, 88, or 136.

Proof. The proof essentially repeats that of Theorem 2.3.8. We construct all
quadratic double circulant codes of length up to 3928 (see Theorem 1.1.10 (a)).
Then, with Algorithm 2.3.5 in every code of length n 6= 8, 24, 40, 88, or 136
we find with Magma a codeword of weight smaller than d = 4

⌊ n
24

⌋
+ 4, thus

showing that the code is not extremal.
Note that for codes of smaller lengths we use direct enumeration. For larger

codes we take the Sylow 2-subgroup of PSL(2, p)×Z2 as H.

Below we give an example how a computation runs.

Example 2.3.16. Let C be a quadratic double circulant code of length n = 3736
= 2 · 1867 + 2. We are searching for a codeword of weight smaller than d = 624.

As a subgroup H of G = PSL(2, 1867)×Z2 we take a Sylow 2-subgroup of G
of order 23 = 8. The subcode CH is of dimension 234.

With the built-in Magma function WordsOfBoundedWeight we find in CH

a codeword of weight 616 < d. This proves that C is not extremal.

The Magma code for this example may be found in Listing A.3 in Ap-
pendix A.

2.4 Extremal Type II extended cyclic codes

The goal of this section is to classify extremal Type II codes with automorphisms
of large prime order. As we already mentioned in Section 2.2, an extremal
code invariant under an automorphism of prime order larger than half of code’s
length is equivalent to an extended cyclic code.

Lemma 2.4.1. Let C be an extremal Type II code of length n > 48 and let σ be its auto-
morphism of prime order p > n

2 . Then p = n− 1 = 24m + 8`− 1, where ` ∈ {0, 1},
and C is equivalent to an extended odd-like duadic code.

2.4. Extremal Type II extended cyclic codes 43

Proof. From Corollary 2.2.11 we know that p = n − 1 = 24m + 8` − 1, where
` ∈ {0, 1}, and that σ is of type p -(1, 1). Then it follows from Lemma 2.2.3 and
Lemma 1.3.11 that C is equivalent to an extended odd-like duadic code.

Remark 2.4.2. Note that we are only interested in extremal codes of length n > 48.
As a matter of fact, all extremal Type II codes of lengths n ≤ 48, n 6= 40, are
classified (see Table 2.1), and those of length 40 do not admit automorphisms of
prime order p > n

2 (see Huffman [39]).

What we are actually going to do in this section is to classify extremal ex-
tended odd-like duadic codes. More precisely, we are going to construct all
odd-like duadic codes of prime lengths p ≡ −1 mod 8 with p ≤ 3927 (see Theo-
rem 1.1.10 (a)) and check, which of them have extremal extensions.

Throughout this section let C be an odd-like duadic code of prime length
p ≡ −1 mod 8. It follows from Lemma 1.3.9 and Remark 1.3.10 that the idem-
potent of C is of the form

e(x) = ∑
j∈S

xj,

where S is one of the sets S1 or S2 that form a splitting of p. Recall from Sec-
tion 1.3 that S is a disjoint union of nonzero cyclotomic cosets modulo p, and
that nontrivial cyclotomic cosets modulo a prime p all have the same size s(p),
where s(p) is the multiplicative order of 2 modulo p. Denote by k = p−1

s(p) the
number of nonzero cosets. We want to stress that k is even, since in our case s(p)
is odd, as we now prove.

Lemma 2.4.3. For a prime p of the form p ≡ −1 mod 8 we have s(p) | p−1
2 . In

particular s(p) is odd, since p−1
2 is odd.

Proof. If p ≡ −1 mod 8 then the element 2 ∈ F∗p is a square modulo p (see [57,
Chapter 16]). Let a ∈ F∗p be such that a2 = 2. By Fermat’s little theorem we have

ap−1 ≡ 2
p−1

2 ≡ 1 mod p, which shows that s(p) divides p−1
2 .

Let us consider the extreme case s(p) = p−1
2 , when the number k of nonzero

cyclotomic cosets is 2. We already pointed out in Example 1.3.12 that in the case
of two nonzero cosets, the cosets form the only splitting of p. Hence, there are
two (equivalent) odd-like duadic codes. These are actually the two quadratic
residue codes. For future reference we formulate this as the following.

Lemma 2.4.4. If p is a prime of the form p ≡ −1 mod 8 with s(p) = p−1
2 then up to

equivalence there is only one self-dual extended cyclic code of length p + 1, namely, the
extended quadratic residue code.

Remark 2.4.5. Note that if p = 24m− 1 then s(p) = p−1
2 for all m ≤ 154 except

m = 18, 38, 46, 98, 112, and 133. If p = 24m + 7 with m ≤ 159 then s(p) = p−1
2

44 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

in approximately half of the cases. Thus, many of the codes in question are
extended quadratic residue codes, which have been classified in Theorem 2.3.8.

From now on we consider the general case, i.e., s(p) is not necessarily equal
to p−1

2 . In order to construct all odd-like duadic codes we need to know all
possible splittings of p. By a result of Pless et al. [67] we can assume that µ−1 is
a multiplier that gives every splitting.

Lemma 2.4.6 ([67], see also [41, Section 6.4]). If p is a prime with p ≡ −1 mod 8
then every splitting of p is given by the multiplier µ−1.

Note that the image of a cyclotomic coset Ct, where t ∈ F∗p is a coset repre-
sentative, under µ−1 contains the element −t. Thus, without loss of generality,
we can denote the k nonzero 2-cyclotomic cosets modulo p by

Ci1 , . . . , Cik/2 , C−i1 , . . . , C−ik/2 ,

where {±i1, . . . ,±ik/2} is a transversal.
Let S1 and S2 be two sets that form a splitting of p given by µ−1. If for some t

a coset Ct lies in S1, then the coset C−t lies in S2. Hence, each of the two sets S1

and S2 contains exactly one coset of every pair
{
Cij , C−ij

}
, 1 ≤ j ≤ k

2 , and it

follows that the total number of odd-like duadic codes is 2k/2.
Combining the discussion above with Lemma 1.3.9 and Remark 1.3.10 we get

the following.

Lemma 2.4.7. Let C be an odd-like duadic code of prime length p with p ≡ −1 mod 8.
Let furthermore

Ci1 , . . . , Cik/2 , C−i1 , . . . , C−ik/2

denote the k nonzero cyclotomic cosets modulo p (here i1, . . . , ik/2 are distinct elements
in F∗p). Then the generating idempotent of C is given by the formula

e(x) = ∑
j∈S

xj, (2.5)

where S is a union of exactly k
2 cosets. Moreover, S satisfies the following condition:

if for some t ∈ {±i1, . . . ,±ik/2} the coset Ct is contained in S, then C−t 6⊂ S. (2.6)

In particular, in total there are exactly 2k/2 odd-like duadic codes.

Corollary 2.4.8. There are at least
⌈

2k/2

k

⌉
inequivalent odd-like duadic codes of length p,

where k = p−1
s(p) is the number of nonzero cyclotomic cosets.

Proof. From Corollary 1.3.6 we know that two odd-like duadic codes of prime
length are equivalent if and only if there is a multiplier µt with t in a transver-
sal T , such that it maps the idempotent of one code onto the idempotent of the
other. Thus, there are at most k codes in an equivalence class. It follows that
there are at least

⌈
2k/2

k

⌉
inequivalent codes.

2.4. Extremal Type II extended cyclic codes 45

As we know from Lemma 2.4.4, the two quadratic residue codes are the only
odd-like duadic codes if s(p) = p−1

2 . As a matter of fact, quadratic residue codes
always appear among duadic codes of prime lengths. It is readily seen that there
are no other codes in their equivalence class.

Proposition 2.4.9. The equivalence class of the two quadratic residue codes of length p
contains no other cyclic codes.

Proof. Let Q and N denote the sets of squares and nonsquares in F∗p. For every
r ∈ Q the multiplier µr leaves the two sets invariant; for every n ∈ N, µn inter-
chages Q and N. The statement follows from Lemma 1.3.5 and the form of the
generating idempotents of quadratic residue codes (see Definition 2.3.1).

Below we describe how to compute the number of inequivalent odd-like
duadic codes, using only elementary group theory.

Proposition 2.4.10. The k = p−1
s(p) nonzero cyclotomic cosets modulo a prime p form the

cyclic group G = F∗p/C1, where C1 is the cyclotomic coset containing the unity 1 ∈ F∗p.

Proof. It follows from Definition 1.3.3 that C1 is a cyclic group of order s(p) and
the other cyclotomic cosets are the left cosets of C1 in the group F∗p. Indeed, for
any t in a transversal we can write Ct = tC1. Hence, the k nonzero cyclotomic
cosets form the quotient group G = F∗p/C1. Finally G is cyclic, since both F∗p
and C1 are cyclic.

Lemma 2.4.11. Let p be a prime of the form p ≡ −1 mod 8. Further, let G denote the
group of k nonzero cyclotomic cosets modulo p. Then the equivalence classes of odd-like
duadic codes of length p correspond to the orbits in the action of G on subsets S ⊂ G of
cardinality k

2 that satisfy condition (2.6). In particular, the number of inequivalent codes
depends only on the number k of nonzero cyclotomic cosets.

Proof. Let T denote a transversal. Without loss of generality we may assume
that 1 ∈ T . From Lemma 2.4.6 it follows that −1 ∈ T .

Note that we can write
G = {Ct | t ∈ T } ,

and that the multiplication in G may be considered as the action of a multiplier,
since

Ct · Cs = (tC1) · (sC1) = (ts)C1 = Cts = Ctµs = Ctµs

for t, s ∈ T .
Recall from Lemma 2.4.7 that the idempotents of odd-like duadic codes are

given by the formula
e(x) = ∑

j∈S
xj,

46 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

where S is a union of exactly k
2 cosets that satisfies condition (2.6). Note that G

acts on the idempotents via

e(x)Ct := e(x)µt = ∑
j∈S

xjt (mod xp − 1) = ∑
j∈Sµt

xj (2.7)

for t ∈ T (see Definition 1.3.4).
From (2.7) and Corollary 1.3.6 it follows that the equivalence classes of odd-

like duadic codes of length p correspond to the orbits in the action of G on
subsets S ⊂ G of cardinality k

2 that satisfy condition (2.6).

Remark 2.4.12. Instead of the group G of nonzero cyclotomic cosets modulo p
in Lemma 2.4.11 we can use any cyclic group G of order k = p−1

s(p) . In this case
condition (2.6) has to be replaced by the following condition:

if some g ∈ G lies in S then gh 6∈ S, (2.8)

where h is a unique element of order 2 in G. This is justified, because

C−t = Ct · C−1

in the group G, and C−1 is a unique element of order 2 in G.

Notice that Lemma 2.4.4 can be obtained as a corollary of Lemma 2.4.11.
Below we apply Lemma 2.4.11 and Remark 2.4.12 in case of k = 6 cosets.

Corollary 2.4.13. If s(p) = p−1
6 for a prime p ≡ −1 mod 8, then there are two equi-

valence classes of odd-like duadic codes of length p.

Proof. If s(p) = p−1
6 then there are k = 6 nonzero cyclotomic cosets modulo p

and the group G is of order 6. By Remark 2.4.12 we can consider any cyclic
group of order 6, e.g.,

G =
{

1, g, g2, g3, g4, g5
}

.

Here g3 is a unique element of order 2. Then the 8 subsets of G of cardinality k
2

that satisfy condition (2.8) are as follows:

S1 =
{

1, g, g2} ,
S2 =

{
1, g, g5} ,

S3 =
{

1, g2, g4} ,
S4 =

{
1, g4, g5} ,

S5 =
{

g, g2, g3} ,
S6 =

{
g, g3, g5} ,

S7 =
{

g2, g3, g4} ,
S8 =

{
g3, g4, g5} .

2.4. Extremal Type II extended cyclic codes 47

It is an easy verification that there are indeed two orbits in the action of G on
these subsets, namely,

S1G = {S1, S5, S7, S8, S4, S2} and
S3G = {S3, S6} .

The statement follows now from Lemma 2.4.11 and Remark 2.4.12.

We have everything we need to start the classification of extremal Type II
extended cyclic codes. First recall that if s(p) = p−1

2 then it follows from
Lemma 2.4.4 that the only codes are extended quadratic residue codes and they
are already classified by Theorem 2.3.8.

Let s(p) < p−1
2 and thus k > 2. By Corollary 2.4.8 we have to consider

at least
⌈

2k/2

k

⌉
inequivalent odd-like duadic codes. As in Section 2.3 we search

for small weight codewords in each of the codes to show their non-extremality.
From Lemma 1.3.7 we know that a duadic code of length p is invariant under a
group G < Sp of order p · s(p). Clearly, the same group G acts on the extended
code and leaves it invariant. We only have to embed G in Sp+1 in such a way
that the added coordinate is a fixed point for all permutations in G. With this
information at hand we can apply Algorithm 2.3.5. We want to remark that in
Section 2.5 we discuss when the automorphism group of an extended odd-like
duadic code can be bigger than G.

Note that there is much less information about the automorphism group,
compared to the case of quadratic residue codes. Because of that we are not able
to classify extremal extended cyclic codes completely. However we do classify
all codes of lengths up to one thousand, and there are only two open cases for
lengths between 1000 and 2000. More precisely, we have the following result.

Theorem 2.4.14. Extremal Type II extended cyclic codes of length n = p + 1, where p
is a prime, can exist only in one of the following cases:

(i) for p = 7, 23, 47, 79 and 103 there is exactly one such code up to equivalence;

(ii) for p = 31 there are exactly two inequivalent codes;

(iii) for p = 1399, 2383, 2767, 3343, 3463, or 3607 there might exist only one code up
to equivalence;

(iv) for p = 1103, 2351, 2687, 3191, or 3391 there might exist several inequivalent
extremal codes.

Proof. For the five lengths in (i) we have s(p) = p−1
2 , and it follows from Lem-

ma 2.4.4 that there are no other duadic codes apart from quadratic residue codes.
Extended quadratic residue codes of length p + 1 for p in (i) are extremal by
Theorem 2.3.8.

48 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

It is known (see Section 2.1) that there are five extremal codes of length 32.
Two of them, namely, the quadratic residue code and the second order Reed-
Muller code, are extended cyclic. Thus (ii) follows.

For all lengths in (iii) we have s(p) = p−1
6 . Therefore, by Corollary 2.4.13

there are two inequivalent odd-like duadic codes. By Proposition 2.4.9 one of
them is the quadratic residue code, and the extended code is not extremal by
Theorem 2.3.8. Hence, only one possible code remains.

For all of the cases in (iv) we have k = p−1
s(p) ≥ 30 and it follows from Corol-

lary 2.4.8 that the number of inequivalent codes is greater than one.
Let p be one of the primes of the form p = 24m + 8` − 1 ≤ 3827, where

` ∈ {0, 1} and s(p) > p−1
2 , that are not listed in cases (i)–(iv). (Recall from

Theorem 1.1.10 (a) that extremal Type II codes do not exist for lengths greater
than 3928.) Using Lemma 2.4.7 we construct all self-dual extended cyclic codes
of length n = p + 1. In each of the codes we find a word of weight less than
4m + 4 (either by a direct search or using Algorithm 2.3.5), thus showing that
none of them is extremal.

All computations are carried out with Magma.

Remark 2.4.15. For all primes p in Theorem 2.4.14 (iii) s(p) is also a prime. Hence,
the group G of order p · s(p) has only two nontrivial subgroups, namely, H1 of
order p and H2 of order s(p). Algorithm 2.3.5 fails to find codewords of small
weight when using either one of the subgroups H1 or H2, since the dimensions
of the subcodes CH1 and CH2 are too small.

For the primes p = 1103, 2687, and 3391 in Theorem 2.4.14 (iv) we have
s(p) = 29, 79, and 113, respectively, which are all primes. We applied Algo-
rithm 2.3.5 to all extended cyclic codes of length p + 1 with a subgroup H of
order s(p). However, for some of the codes of this lengths the algorithm failed
to return a codeword of small weight.

If p = 2351, we have s(p) = 47, also a prime. From Corollary 2.4.8 it fol-
lows that there are at least 671 089 inequivalent duadic codes of this length.
The estimated running time of Algorithm 2.3.5 for this number of codes on our
computer (2.80 GHz) is approximately one and a half years. We suppose that,
similar to the cases in the previous paragraph, the algorithm is likely not to find
small-weight codewords for all codes in question.

Finally, for p = 3191 there at least 9 256 396 inequivalent codes by Corol-
lary 2.4.8. We are not able to find a way to construct all of them in a reasonable
amount of time.

Example 2.4.16. We want to construct all extended cyclic codes of length n = 912,
and show that all of them are not extremal.

For p = 911 we have s(p) = 91 = 7 · 13. As a subgroup H in Algorithm 2.3.5
we use the cyclic group of order 13.

2.5. Automorphism groups of binary extended duadic codes 49

We begin by computing the k = p−1
s(p) = 10 nonzero cyclotomic cosets mod-

ulo p and choosing a transversal. After that, we construct all sets S of cardina-
lity k

2 = 5 that satisfy condition (2.6) (see Lemma 2.4.7). For each of such sets S
we do the following.

First, we construct an idempotent, which is given by (2.5). Then, with a built-
in Magma function CyclicCode from the idempotent we construct a code C.
Finally, we find a codeword of weight smaller than d = 156 in the subcode CH,
thus showing that C is not extremal.

The Magma code for this example may be found in Listing A.4 in Ap-
pendix A.

Recall from Lemma 2.4.1 that an extremal Type II code, which is invariant
under an automorphism of large prime order (that is, p is bigger than half of
code’s length), is equivalent to an extended cyclic code. Thus, Theorem 2.4.14
provides some strong evidence that the following conjecture might hold true.

Conjecture 2.4.17. Let C be an extremal Type II code of length n with an automorphism
of prime order p > n

2 . Then n = 8, 24, 32, 48, 80, or 104.

2.5 Automorphism groups of binary extended duadic
codes

In this section we consider when the automorphism group of an extended odd-
like duadic code can be bigger than the group of the original, nonextended code.
We only consider binary codes in this section.

Proposition 2.5.1. Let C be a cyclic code with extension Ĉ. If Ĉ has an automorphism
that does not fix the new coordinate, then Aut(Ĉ) is 2-transitive.

Proof. First, observe that by definition, a cyclic code C of length n is invariant
under a cyclic shift σ of order n, hence Aut(C) is transitive. Now, denote the
coordinates of Ĉ by 0, 1, . . . , n− 1, ∞ and let τ ∈ Aut(Ĉ) be such that τ(∞) 6= ∞.
Note that we consider σ acting on the coordinates of Ĉ in such a way that ∞
is a fixed point of σ. It follows that the group G ≤ Aut(Ĉ), generated by σ

and τ, is transitive on the set of coordinates {0, 1, . . . , n− 1, ∞}. Moreover, the
stabilizer G∞ of the new coordinate contains 〈σ〉. Consequently, the group G,
and hence Aut(Ĉ), is 2-transitive.

Some families of extended cyclic codes with 2-transitive groups were known
for a very long time, e.g., Reed-Muller codes or quadratic residue codes. Recall
from Section 2.1 that both of these families provide examples of extremal Type II
codes.

50 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

Among extended cyclic codes of particular interest are self-dual codes. From
Lemma 1.3.11 we know that a cyclic code with a self-dual extension is necessarily
a duadic code. An attempt to classify extended duadic codes with 2-transitive
groups was already made in [53] in a special case. However, due to an error
in the proof, this classification was not complete. Later Ito [48] extended the
classification to the general case, still without addressing the error in [53].

We state what was proved as the following result.

Lemma 2.5.2 ([48] and [53]). Let C be an extended duadic code of length n. If Aut(C)
is 2-transitive then one of the following holds

(i) n = 2m for some m and Aut(C) ≤ AGL(m, 2) or

(ii) n = p + 1, where p is a prime, and PSL(2, p) ≤ Aut(C).

In [53] the authors claimed that part (ii) of Lemma 2.5.2 leads to a unique
code, namely, the extended quadratic residue code. Although their proof of this
fact was incorrect, the claim is actually true by an older result of Knapp and
Schmid [51].

Lemma 2.5.3 ([51]). Let C be a binary code of length p + 1, where p is an odd prime.
Moreover, let C be invariant under the group PSL(2, p). Then p ≡ ±1 mod 8 and C is
an extended quadratic residue code.

Combining Lemma 2.5.2 and Lemma 2.5.3 we get the following.

Corollary 2.5.4. Let C be an extended duadic code of length n. If Aut(C) is 2-transitive
then one of the following holds

(i) n = 2m for some m and Aut(C) ≤ AGL(m, 2) or

(ii) C is an extended quadratic residue code.

Recall that extremal extended quadratic residue codes are classified in The-
orem 2.3.8. In the next section we finish the classification of extremal extended
cyclic codes with 2-transitive groups. We will consider the case when the auto-
morphism group is a subgroup of AGL(m, 2).

2.6 Extremal binary affine-invariant codes

From Corollary 2.5.4 we know that there are two classes of binary extended
duadic codes with 2-transitive automorphism groups. In this section we consider
case (i) of Corollary 2.5.4, namely, codes of length a power of 2 that are invariant
under a 2-transitive subgroup of AGL(m, 2). Below we show that these are
exactly the so-called affine-invariant codes.

2.6. Extremal binary affine-invariant codes 51

Definition 2.6.1. A self-dual extended cyclic code of length 2m, where m ≥ 3, that
is invariant under the group AGL(1, 2m) = {v 7→ av + b | v, a, b ∈ F2m , a 6= 0} is
called affine-invariant.

Remark 2.6.2. Denote by T a group of translations v 7→ v + a, where v, a ∈ Fm
2 .

Then the group AGL(1, 2m) is isomorhic to T o 〈σ〉, where σ is a cyclic shift of
order 2m − 1 with σ : i 7→ i + 1 mod 2m − 1.

Lemma 2.6.3. Let C be a self-dual extended duadic code of length n = 2m for m ≥ 3 and
let Aut(C) ≤ AGL(m, 2) be 2-transitive. Then C is equivalent to an affine-invariant
code.

Proof. Let T ≤ AGL(m, 2) denote the group of translations of order 2m. From
Lemma 1.2.1 (iii) we know that Aut(C) is an extension T o H of T by a subgroup
H ≤ GL(m, 2), where H acts transitively on 2m − 1 points. Let σ ∈ Sn denote a
cyclic shift of order n− 1 with σ : i 7→ i + 1 mod n− 1. Since C is an extended
cyclic code we have σ ∈ Aut(C). As Aut(C) = T o H and all elements of T have
order 2, we obtain that σ lies in a conjugate of H. In particular, a conjugate of
T o 〈σ〉 is a subgroup of Aut(C). By Remark 2.6.2, T o 〈σ〉 = AGL(1, 2m), and
hence C is equivalent to an affine-invariant code.

The aim of this section is to classify all extremal affine-invariant codes. Since
affine-invariant codes exist for lengths n = 2m, it follows from Lemma 1.3.11
that they are always of Type II. Note that we only have to consider the cases,
where m ≤ 11, since by Theorem 1.1.10 (a) extremal Type II codes do not exist
for lengths greater than 3928. Moreover, for even m affine-invariant codes do not
exist by the following well-known fact.

Lemma 2.6.4. Self-dual extended cyclic codes do not exist for lengths 22k with k > 1.

Proof. Note that the lemma is folklore. We provide one of the possible elemen-
tary proofs.

Let C be a cyclic code of length n with a self-dual extension. It follows
from Lemma 1.3.11 that C is a duadic code. From Section 1.3 we know that all
primes pi in the factorization n = pa1

1 · · · p
ar
r are of the form pi ≡ ±1 mod 8.

Suppose that n = 22k − 1. Then n ≡ (−1)2k − 1 ≡ 0 mod 3. Hence n is
divisible by 3, a contradiction.

Therefore, in order to classify extremal affine-invariant codes we need to
construct all such codes of lengths 8, 32, 128, 512, and 2048 and check, which of
them have minimum distance 4, 8, 24, 88, and 388, respectively.

A way to construct all affine-invariant codes was suggested by Charpin and
Levy-dit-Vehel [17]. More precisely, they give a combinatorial method to con-
struct defining sets of all cyclic codes with affine-invariant extensions. For
reader’s convenience and since it is essential in our classification we repeat their
construction here.

52 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

Let n = 2m − 1 for odd m ≥ 3 and let α be an n-th root of unity. For an
element s ∈ Zn we define the 2-weight of s as a number of nonzero coefficients
in the binary expansion of s. This means that if we write

s =
m−1

∑
i=0

si2i, (2.9)

where each of the si is either 0 or 1, then

wt2(s) = |{ i | 0 ≤ i ≤ m− 1 and si 6= 0}| .

Notice that the 2-weight is constant on cyclotomic cosets modulo n, hence we
may speak of the 2-weight of a coset.

We know from Lemma 1.3.14 that for an odd m ≥ 3 the Reed-Muller code
R(m−1

2 , m) is equivalent to an extended cyclic code. The defining set of this
cyclic code can be found using the 2-weight.

Lemma 2.6.5 (see [57, Chapter 13]). Let m ≥ 3 be odd and let C be a cyclic code
of length n = 2m − 1 such that the extended code Ĉ is equivalent to the Reed-Muller
code R(m−1

2 , m). Then the defining set T of the code C is given by the formula

T =

{
s ∈ Zn

∣∣∣∣wt2(s) ≤
m− 1

2

}
.

Let l denote the partial order, which we define on Zn in the following way:
sl t if and only if si ≤ ti for all 0 ≤ i ≤ m− 1, where si and ti are the coefficients
of the binary expansions of s and t, respectively. Denote the set of predecessors
of an element t ∈ Zn with respect to the partial order l by ∆(t), i.e.,

∆(t) = { s ∈ Zn | s l t} .

For a subset I ⊆ Zn we set
∆(I) =

⋃
t∈I

∆(t).

The following description of the defining sets of affine-invariant codes is due
to Kasami et al. [50].

Lemma 2.6.6 ([50]). Let C be an extended cyclic code with defining set T. Then C is
affine-invariant if and only if ∆(T) = T.

Unfortunately, it is a difficult task to find all sets that satisfy the condition in
Lemma 2.6.6. Below we present a more computer-friendly method to construct
all defining sets. The method is due to Charpin and Levy-dit-Vehel [17].

Lemma 2.6.7 ([17]). Let m be odd and let R be the number of cyclotomic cosets C
modulo 2m − 1 of 2-weight m−1

2 that satisfy the following condition:

if s, s′ ∈ C then s′ /∈ ∆(−s). (2.10)

2.6. Extremal binary affine-invariant codes 53

Furthermore, let Sk denote a union of all cyclotomic cosets of 2-weight k. Then an
extended cyclic code of length 2m is affine-invariant if and only if its defining set T is of
the form

T = S1 ∪ · · · ∪ S m−3
2
∪ S m−1

2
\
(⋃r

i=1
Csi

)
∪
(⋃r

i=1
C−si

)
, (2.11)

where 0 ≤ r ≤ R, wt2(Csi) =
m−1

2 and the union
⋃

i≤r Csi satisfies condition (2.10).

Remark 2.6.8. Note that the defining set T of the Reed-Muller code R(m−1
2 , m)

(see Lemma 2.6.5) is also given by (2.11), where r = 0, i.e.,

T =
⋃

k≤m−1
2

Sk.

Remark 2.6.9. As a matter of fact, in order to construct all defining sets of the
form (2.11) one does not need to verify condition (2.10) for all possible unions of
cyclotomic cosets of 2-weight m−1

2 . Instead, this can be done recursively along
the following lines (see [17]).

Denote by I1 the set of representatives of the cyclotomic cosets of 2-weight m−1
2

that satisfy condition (2.10), i.e.,

I1 =
{

s
∣∣∣wt2(s) = m−1

2 and Cs satisfies (2.10)
}

.

Next, construct the set of pairs

I2 = {{s, t} | s, t ∈ I1 and Cs ∪ Ct satisfies (2.10)} .

Notice that to construct the set I3 of triples one only requires information from I2,
not I1. More precisely, if for some triple {s, t, r} the union Cs ∪ Ct ∪ Cr satis-
fies condition (2.10) then all three unions Cs ∪ Ct, Ct ∪ Cr, and Cs ∪ Cr also sat-
isfy (2.10). In other words, we have

I3 =
{
{s, t, r}

∣∣∣ s, t, r ∈
⋃
I2 and Cs ∪ Ct ∪ Cr satisfies (2.10)

}
,

where
⋃ I2 =

⋃
I∈I2

I is the set of distinct representatives that can occur in
elements of I2. Furthermore, we can recursively define

Ik =
{
{s1, . . . , sk}

∣∣∣ s1, . . . , sk ∈
⋃
Ik−1 and

⋃k

i=1
Csi satisfies (2.10)

}
.

Note that we need to construct the sets Ik only for k ≤ r ≤ |I1|, such that the
set Ir+1 is empty. This means that the unions of more than r cyclotomic cosets
of 2-weight m−1

2 do not satisfy condition (2.10).
Finally let I be the union of all constructed sets Ii, i ≤ r. For uniformity we

put
I = {∅} ∪ {{s} | s ∈ I1} ∪ I2 ∪ · · · ∪ Ir.

Observe that there is one-to-one correspondence between the elements of I and
different defining sets of the form (2.11). (By the previous remark, the empty set
corresponds to the defining set of the Reed-Muller code).

54 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

We provide our implementation of the algorithm described in Remark 2.6.9
in Listing A.5 in Appendix A for the case n = 512 . Note that for n = 512 the
set I4 from Remark 2.6.9 will be empty (see also [17]). Therefore, we only need
to construct the sets I1, I2, and I3.

With Lemma 2.6.7 and Remark 2.6.9 we are ready to classify extremal affine-
invariant codes.

Theorem 2.6.10. Let C be an extremal affine-invariant code. Then C is either the
[8, 4, 4] Hamming code or the [32, 16, 8] second order Reed-Muller code.

Proof. It follows from Theorem 1.1.10 (a) and Lemma 2.6.4 that we only need
to consider codes of length 2m with m = 3, 5, 7, 9, and 11. From Section 2.1
we know all extremal codes of lengths 8 and 32. Only two codes among them,
namely, the Hamming code of length 8 and the second order Reed-Muller code
of length 32, are affine-invariant. In the case m = 7 we can use Theorem 2.4.14,
since 2m − 1 = 127 is a prime and affine-invariant codes are extended cyclic.
Therefore, there are no extremal affine-invariant codes of length 128.

As 511 and 2043 are not primes, we can not use Theorem 2.4.14 for the
cases m = 9 and 11. Nevertheless, we can construct all affine-invariant codes
of lengths 512 and 2048 with Lemma 2.6.7 and Remark 2.6.9. We find that
there are 70 codes of length 512, which agrees with [17], and 515 617 codes of
length 2048. Then to each of the constructed codes we can apply Algorithm 2.3.5
to search for codewords of small weights. It appeared that none of the affine-
invariant codes of these lengths is extremal.

The computations are carried out with Magma.

2.7 Extremal Type II codes invariant under 2-transitive
extensions of elementary abelian groups

In this section we continue to study extremal Type II codes with 2-transitive
automorphism groups. However, we will be no longer restricted to the case of
extended cyclic codes.

Let C be an extremal Type II code invariant under a 2-transitive group G
and let T denote the socle of G. From Lemma 1.2.1 (i) we know that T is either
elementary abelian or simple. In this section we consider the first possibility,
i.e., T is elementary abelian, and prove the following result.

Theorem 2.7.1. Let C be an extremal Type II code of length n. Then C is invariant under
a 2-transitive group with elementary abelian socle if and only if one of the following holds

(i) n = 8 and C is equivalent to the Hamming code,

(ii) n = 32 and C is equivalent to the second order Reed-Muller code,

2.7. Extremal Type II codes and elementary abelian groups 55

(iii) possibly n = 1024 and C is invariant under the group T o SL(2, 25), where T is
the group of translations of the vector space F10

2 .

To prove Theorem 2.7.1 we first need to gather some information about the
group G.

Proposition 2.7.2. Let C be an extremal Type II code of length n invariant under a 2-
transitive group G with the elementary abelian socle T. Then n = 2m for some m ≤ 11
and G = T o H, where H is a subgroup of GL(2, m) that acts transitively on 2m − 1
points. Moreover, T is a group of translations of the vector space Fm

2 .

Proof. Recall from Section 1.2 that the degree of G equals the length of the
code C. From Corollary 1.4.2 it follows that the degree n of G is divisible by 8.
Since the socle T of G is elementary abelian, we have that n is a prime power.
Hence n = 2m for some integer m ≥ 3, and m ≤ 11 by Theorem 1.1.10 (i). From
Lemma 1.2.1 (ii) it follows that G ≤ AGL(m, 2) and T is the group of translations
of the vector space Fm

2 .
Furthermore, by Lemma 1.2.1 (iii) every 2-transitive subgroup G of AGL(m, 2)

is an extension of T by a suitable transitive subgroup of the general linear
group GL(m, 2). Therefore, we may write G = T o H, where H ≤ GL(m, 2)
acts transitively on 2m − 1 points.

Information on transitive subgroups of the general linear group can be found
in [44, Chapter XII, 7.5]. For reader’s convenience we repeat this result here.

Lemma 2.7.3 ([44, Chapter XII, 7.5]). Let H ≤ GL(m, 2) act transitively on 2m − 1
points. If m is a prime then H contains a cycle of order (2m − 1). If m = kr for k > 1
and r > 1, then one of the following possibilities holds for H:

(i) H contains a cycle of order (2m − 1) for all m;

(ii) SL
(
k, 2r) ≤ H for all k and r;

(iii) Sp
(
k, 2r) ≤ H for even k;

(iv) G2(2) ≤ H for m = 6;

(v) H ∼= PSU
(
3, 32) for m = 6;

(vi) H ∼= A6 for m = 4;

(vii) H ∼= A7 for m = 4.

We are now ready to prove Theorem 2.7.1.

Proof of Theorem 2.7.1. Let G = Aut(C) and let T denote the elementary abelian
socle of G. It follows from Proposition 2.7.2 that n = 2m for some m ≤ 11.
Besides, T is a group of translations of the vector space Fm

2 and G = T o H,
where H is a subgroup of GL(m, 2) that acts transitively on 2m − 1 points. The
possibilities for H are listed in Lemma 2.7.3.

56 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

First we consider the case when H contains a cycle of order 2m− 1. It follows
from Lemma 2.2.3 and Remark 2.2.4 that C is equivalent to an extended cyclic
code, which is affine-invariant by Definition 2.6.1. Finally, from Theorem 2.6.10
it follows that up to equivalence C is either the Hamming code of length 8 or the
second order Reed-Muller code of length 32.

Now, suppose that H does not contain a cyclic shift of order 2m − 1, i.e., C is
not an extended cyclic code. It follows from Lemma 2.7.3 that m is not a prime.
Hence, we may write m = kr for some integers k, r > 1.

Next, we check whether a group G = T o H, where H is given by one of
the cases (ii) to (vi) of Lemma 2.7.3, may occur as an automorphism group of
a Type II code C of length n = 2m. In order to do this we exploit the structure
of C and the ambient space Fn

2 as F2G-modules. In particular, from Proposi-
tion 1.2.2 we know that C is a submodule of Fn

2 of dimension n
2 . For each H

from Lemma 2.7.3, cases (ii) to (vi), we construct all G-modules of dimension n
2 .

Then, for every such module C we check whether it is self-dual as a code.
Recall that n = 2m with m ≤ 11. If m is even, then the only cases, for which

there exist n
2 -dimensional FG-modules, are H ∼= SL(2, 2r), where r = 4 or 5. For

r = 4 we get more than 50 000 modules, but none of them is a self-dual code.
For r = 5 the number of modules is even bigger, and we are unable to find a
way to construct all of them in a reasonable amount of time.

Apart from the case H ∼= SL(2, 25), for which we can not prove the desired
result, the only group from Lemma 2.7.3, cases (ii) to (vi), that admits self-dual
codes is H ∼= SL(3, 23) for m = 9 = 3 · 3. In this case there are exactly three
Type II codes of length 512 invariant under T o SL(3, 23). One of them is the
Reed-Muller code R(4, 9). By Lemma 1.3.14 the code R(4, 9) has minimum
distance 32 and is, therefore, not extremal. Using Algorithm 2.3.5 we check that
the other two codes are not extremal either.

Thus, if H does not contain a cycle of order 2m − 1 then C might exist only if
H ∼= SL(2, 25). This completes the proof of Theorem 2.7.1.

All computations are carried out with Magma.

Example 2.7.4. We want to find all extremal Type II codes of length n = 29 = 512
that are invariant under a group G = T o SL(3, 23), where T is elementary
abelian of order n.

First, using the built-in Magma function Subgroups we construct G as a
subgroup of AGL(9, 2) of order 29 · 16 482 816. With a function Submodules

we find all submodules M of the ambient space Fn
2 , which is considered as an

F2G-module, such that dim M = n
2 . For each of these submodules M we check

if it is self-dual and doubly-even as a code C. If this is the case then we search
for a small weight codeword in the code C.

It appears that there are exactly three Type II codes of length 512 invariant
under G, and none of these codes is extremal.

2.8. Extremal Type II codes with 2-transitive automorphism groups 57

The Magma code for this example may be found in Listing A.6 in Ap-
pendix A.

Based on the results of this section we want to mention an interesting obser-
vation. By Lemma 2.7.3 extended cyclic self-dual codes of length n = 2m exist
only for odd m. But even if we drop the requirement that the code is extended
cyclic, there are still no self-dual codes invariant under a 2-transitive group with
elementary abelian socle for even m < 10. Furthermore, for odd m, the only tran-
sitive subgroups of GL(m, 2) apart from the cyclic groups are SL(k, 2r), where
m = kr with k > 1 and r > 1.

We conclude this section with an open problem.

Conjecture 2.7.5. Let C be a Type II code of length 2m invariant under a 2-transitive
automorphism group G with elementary abelian socle T. Then m is odd and one of the
following holds true

(i) AGL(1, 2m) ≤ G, and C is affine-invariant, or

(ii) T o SL(k, 2r) ≤ G, where m = kr and k, r > 1.

2.8 Extremal Type II codes with 2-transitive automor-
phism groups

In this section we finish the classification of extremal Type II codes with 2-
transitive automorphism groups and prove one of the main results of the thesis.
This result was published in [58].

Theorem 2.8.1. Let C be an extremal Type II code of length n. If Aut(C) is 2-transitive,
then one of the following holds.

(i) n = 8, 24, 32, 48, 80, or 104, and C is equivalent to an extended quadratic residue
code,

(ii) n = 32 and up to equivalence C is the second order Reed-Muller code,

(iii) possibly n = 1024 and C is invariant under the group T o SL(2, 25), where T is
the group of translations of the vector space F10

2 .

Let C be an extremal Type II code of length n invariant under a 2-transitive
automorphism group G with a socle T. Recall from Lemma 1.2.1 (i) that T is ei-
ther elementary abelian or simple. We considered the case when T is elementary
abelian in the previous section. So, let in the following T be simple.

First, we deal with the case that T is the alternating group An.

Lemma 2.8.2. No Type II code of length n ≥ 8 is invariant under An.

58 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

A more general result was already proven in [51], where the authors used
advanced representation theoretical methods. Here we present a short, pure
coding theoretical proof.

Proof of Lemma 2.8.2. Let C be a Type II code and assume that An ≤ Aut(C).
Since C is doubly-even, the minimum distance of C is at least 4.

Fix a codeword c of C. Let i0 denote a coordinate position, in which c has
a zero, i.e., ci0 = 0. Let i1 and i2 be positions, in which c has ones. The cy-
cle τ = (i0, i1, i2) of order 3 is in An, hence cτ ∈ C. Notice that the code-
word c + cτ ∈ C has ones in positions i0 and i1 and zeros in all other positions.
Hence wt(c + cτ) = 2, a contradiction.

The following result is the classification of extremal Type II codes with 2-
transitive groups in the case when the socle T is simple.

Theorem 2.8.3. Let C be an extremal Type II code of length n. Further, let G = Aut(C)
be 2-transitive and let the socle T of G be simple. Then n = 8, 24, 32, 48, 80, or 104
and C is equivalent to an extended quadratic residue code.

Proof. First, we consider the case when p = n− 1 is a prime. Since the group G
is 2-transitive, it contains an element of order p. It follows from Lemma 2.2.3
that C is equivalent to an extended cyclic code. Moreover C is equivalent to an
extended quadratic residue code by Corollary 2.5.4. (Note that part (i) of Corol-
lary 2.5.4 can not happen, since in that case the socle of the automorphism group
is elementary abelian.) Finally, from Theorem 2.3.8 it follows that n = 8, 24, 32,
48, 80, or 104.

Now, let n− 1 be a composite number. Note that in this case C is not neces-
sarily equivalent to an extended cyclic code.

All simple groups that can occur as a socle T of a 2-transitive group are
known (see [15]). For reader’s convenience we list the possibilities in Table 2.2.
The first column of the table contains groups names; the degree a of 2-transitive
representation is in the second column. The degree of transitivity of a given
group T is the third column. Note that the number in parentheses is the highest
possible degree of transitivity for any group that contains T as a socle.

It follows from Lemma 2.8.2 that the case T = An can not happen. To elimi-
nate some other cases we use the restrictions on the length n of the code C, on
which the group T acts. Recall from Corollary 1.4.2 that n is a multiple of 8.
This condition, together with the bound on n from Theorem 1.1.10 (a), leaves the
following possibilities for T from Table 2.2:

(1) HS with n = 176;

(2) PSL(2, 73) with n = 344;

(3) PSU(3, 7) with n = 344;

2.8. Extremal Type II codes with 2-transitive automorphism groups 59

T n k Remarks

An, n ≥ 5 n n− 2 (n) Two representations if n = 6
PSL(2, q) q + 1 2 (3) q 6= 2, 3 a prime power
PSL(d, q), d > 2 (qd − 1)/(q− 1) 2 Two representations
PSU(3, q) q3 + 1 2 q > 2
2B2(q) (Suzuki) q2 + 1 2 q = 22a+1 > 2
2G2(q) (Ree) q3 + 1 2 q = 32a+1 > 3
PSp(2d, 2) 22d−1 + 2d−1 2 d > 2
PSp(2d, 2) 22d−1 − 2d−1 2 d > 2
PSL(2, 11) 11 2 Two representations
PSL(2, 8) 28 1 (2)
A7 15 2 Two representations
M11 (Mathieu) 11 4
M11 (Mathieu) 12 3
M12 (Mathieu) 12 5 Two representations
M22 (Mathieu) 22 3
M23 (Mathieu) 23 4
M24 (Mathieu) 24 5
HS (Higman–Sims) 176 2 Two representations
Co3 (Conway) 276 2

Table 2.2: Simple groups that can occur as a socle of a 2-transitive group

(4) PSL(8, 3) with n = 3280;

(5) PSL(4, p) for p = 3, 7, 11, n = 40, 400, 1464;

(6) PSp(2d, 2)− for d = 4, 5, 6, n = 120, 496, 2016;

(7) PSp(2d, 2)+ for d = 4, 5, 6, n = 136, 528, 2080.

For each of these groups T we need to find all extremal Type II codes that are
invariant under T. In order to do this we use Proposition 1.2.2.

Let T be a group in one of cases (1) to (7). We are looking for submodules C
of the ambient space Fn

2 , such that dim C = n
2 . If such submodule C is found,

we check if it is self-dual and doubly-even as a code. Then, for Type II codes C
we use Algorithm 2.3.5 to find codewords of small weight in C.

For the Higman–Sims group HS one can take representation data from the
Atlas of Finite Group Representations [79]. For the groups in cases (2), (3), (4)
and (5) the default Magma representations may be used. However, obtaining
representations for the groups PSp (cases (6) and (7)) is not straightforward. The
Atlas only provides information about smaller groups and the representations
of PSp(2 · 6, 2) are not included. Information about maximal subgroups (the

60 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

action on their cosets yield possible permutation representations) of PSp(2d, 2)
may be found, for instance, in [54, Section 3]. Considering the orders of the
subgroups we find that∣∣PSp(2d, 2) : O−(2d, 2)

∣∣ = 22d−1 − 2d−1

and ∣∣PSp(2d, 2) : O+(2d, 2)
∣∣ = 22d−1 + 2d−1,

where O+ and O− are orthogonal groups Hence, the representations in case (6)
are given by the action of PSp(2d, 2) on the cosets of O−(2d, 2) and the ones
in (7) — of O+(2d, 2).

A computation with Magma shows that for all cases, apart from case (2),
there are no submodules of Fn

2 of dimension n
2 . In the case T = PSL(2, 73) there

are exactly two such submodules. It follows from Lemma 2.3.12 that these are
exactly the extended generalized quadratic residue codes. By Theorem 2.3.13
these codes are not extremal.

Thus, the case n− 1 does not lead to extremal codes and the proof is com-
plete.

Example 2.8.4. We want to construct all self-dual codes of length n = 2016 that
are invariant under the group G = PSp(2 · 6, 2) of degree n.

First we obtain the required permutation representation of G as the image
of the action of G on the cosets of the maximal subgroup O−(2 · 6, 2) ≤ G. For
that purpose we use the built-in Magma function CosetImage. Then we find
all submodules of the ambient space Fn

2 , which we consider as an F2G-module.
None of these submodules is of dimension n

2 . Therefore, there are no self-dual
dual codes of length n invariant under G.

The Magma code for this example may be found in Listing A.7 in Ap-
pendix A.

Proof of Theorem 2.8.1. The proof follows from Lemma 1.2.1 (i) and Theorems 2.7.1
and 2.8.3.

2.9 Extremal Type III codes with 2-transitive auto-
morphism groups

In this section we apply the methods from the previous sections to classify ex-
tremal Type III codes with 2-transitive permutation automorphism groups.

Theorem 2.9.1. Let C be an extremal Type III code of length n with a 2-transitive
permutation automorphism group. Then n = 12 and C is the ternary Golay code.

2.9. Extremal Type III codes with 2-transitive automorphism groups 61

Proof. Let G denote the permutation automorphism group of C. Since G is 2-
transitive, it follows from Lemma 1.2.1 (i) that the socle T of G is either elemen-
tary abelian or simple.

Consider the case that T is elementary abelian. From Corollary 1.4.2 we know
that 4 | n. Hence n = 2m and m ≤ 7 by Theorem 1.1.11. By Lemma 1.2.1 (iii)
and (ii) we can write G = T o H, where H ≤ GL(m, 2) acts transitively on 2m− 1
points. Note that the possibilities for H are given in Lemma 2.7.3. With Magma

we find that for all m ≤ 7 and all posssible groups H there are no n
2 -dimensional

F3G-modules and, therefore, no Type III codes.
Now, let T be simple. Then T is one of the groups from Table 2.2 with

4 | n 6= 72, 96, 120 and n < 144 (by Corollary 1.4.2 and Theorem 1.1.11). The
possibilities are as follows:

(1) An;

(2) PSL(2, p) with n = p + 1;

(3) M11 with n = 12;

(4) M12 with n = 12;

(5) M24 with n = 24;

(6) PSL(2, 8) with n = 28;

(7) PSp(2 · 3, 2)− with n = 28;

(8) PSL(4, 3) with n = 40;

(9) PSp(2d, 2)+ for d = 3, 4, n = 36, 136.

Note that the first two cases, namely, T = An and T = PSL(2, p), can be
eliminated using results of Knapp and Schmid [51]. With Magma we see that
the only possible group, which has an n

2 -dimensional F3T-module is the Mathieu
group M11 of degree 12. The module is in fact the famous [12, 6, 6]3 Golay code,
which is a unique Type III code of this length (see [65]). Note that the full
(monomial) automorphism group of this code is a non-split extension of Z2

by M12 (see [41, Section 10.4.2]).

Example 2.9.2. We want to prove that there are no Type III codes of length
n = 64 = 26 that are invariant under a 2-transitive subgroup of AGL(6, 2).

We need construct all 2-transitive subgroups of AGL(6, 2). We know from
Lemma 1.2.1 (iii) that these are the extensions of an elementary abelian group T
of order 26 by a subgroup of GL(6, 2), which is transitive on 26− 1 points. So, as
a first step we find all transitive subgroups H of GL(6, 2) with a built-in Magma

function Subgroups. Then for every such H we find 2-transitive subgroups G
of AGL(6, 2) of order 26 · |H|. Finally, for every group G, found in the previous
step, we verify that the ambient space Fn

3 , considered as an F3G-module, does
not have any n

2 -dimensional submodules. In particular, there are no ternary
self-dual codes of length n for every G.

62 CHAPTER 2. AUTOMORPHISMS OF EXTREMAL CODES

The Magma code for this example may be found in Listing A.8 in Ap-
pendix A.

2.10 Extremal Type IV codes with 2-transitive auto-
morphism groups

This section is devoted to the classification of extremal Type IV codes with 2-
transitive permutation automorphism groups. Once again we use the same
methods as in the binary case (see Sections 2.7 and 2.8).

Theorem 2.10.1. Let C be an extremal Type IV code of length n > 2 with a 2-transitive
permutation automorphism group. Then one of the following holds true

(i) n = 6, 8, 14, or 30 and C is equivalent to an extended generalized quadratic
residue code,

(ii) n = 22 and C is unique up to equivalence.

Proof. Let G denote the permutation part of Aut(C). Furthermore, let T denote
the socle of G, which by Lemma 1.2.1 (i) is either elementary abelian or simple.

If T is elementary abelian then n = 2m. Moreover, by Theorem 1.1.10 (b) we
have m ≤ 6. We check with Magma that for even m there are no Hermitian self-
dual codes for all possible groups G. If m = 3 or 5 then we find with Magma

that the only Type IV codes that are invariant under a 2-transitive permutation
group are generalized Reed-Muller codes (see [41, Section 13.2.3]). Only one
generalized Reed-Muller code is extremal, namely, if n = 8. In this case it is
also equivalent to an extended generalized quadratic residue code (see [74] for
a definition over F4).

Now, let T be simple. Then T is one of the groups in Table 2.2, where n is
even by Corollary 1.4.2 and satisfies the bounds in Theorem 1.1.10 (b). Thus, the
possibilities for T are as follows:

(1) An;

(2) PSL(2, p) with n = p + 1;

(3) M11 with n = 12;

(4) M12 with n = 12;

(5) M22 with n = 22;

(6) M24 with n = 24;

(7) PSL(2, 8) with n = 28;

(8) PSp(2 · 3, 2)+ with n = 36;

2.10. Extremal Type IV codes with 2-transitive automorphism groups 63

(9) PSL(4, 3) with n = 40;

(10) PSp(2d, 2)− for d = 3, 4, n = 28, 120;

With Magma we find that the only groups that have n
2 -dimensional F4T-modules

are the Mathieu groups M22 and M24 and PSL(2, p), in which case p is a prime.
For T = M22 there are three Type IV codes, two of which are extremal.

However, we check with Magma that the two extremal codes are equivalent.
For T = M24 we get only one Type IV code, namely, the F4 extension of

the binary Golay code, which is also an extended generalized quadratic residue
code. The minimum distance is 8 and, therefore, the code is not extremal.

From [51] we know that extended generalized quadratic residue codes are the
only codes over F4 of length n = p + 1 that are invariant under PSL(2, p). Note
that by a result of Martínez-Pérez and Willems [60] these codes are Hermitian
self-dual if and only if −2 is a nonsquare in F∗p.

Among Type IV extended generalized quadratic residue codes only those of
length n = 6, 8, 14, and 30 are extremal.

All computations are carried out with Magma.

Example 2.10.2. We want to find all extremal Type IV codes of length n = 22
that are invariant under the group G = M22 of degree n.

We construct G using the generators taken from the Atlas of Finite Group
Representations [79]. Then we find all F4G-modules M of dimension n

2 as sub-
modules of the ambient space Fn

4 , which we consider as an F4G-module. For
every such submodule M we check, if it is Hermitian self-dual as a code C and if
all its weights are even. After that we check the minimum distance of the found
Type IV codes and see that exactly two codes are extremal. Finally, we verify
that the two extremal codes are indeed equivalent.

The Magma code for this example may be found in Listing A.9 in Ap-
pendix A.

Chapter 3

Performance of self-dual codes

The previous chapter is devoted almost entirely to extremal doubly-even self-
dual codes. The main reasons that make dealing with extremal Type II codes
easier, as opposed to Type I codes, are the uniqueness of their weight enumerator
and the bound of Theorem 1.1.10 (a) on their length.

We can not use the classification methods from the previous chapter for
Type I codes. Nevertheless, we may wonder whether binary extremal self-dual
codes of one type are better than the codes of the other type. Clearly, the codes
that have “better” parameters (i.e., smaller length or larger minimum distance)
are better. Thus, we may want to compare codes that have the same parameters.
On the one hand, Type II codes exist only at lengths a multiple of 8 (see Corol-
lary 1.4.2). On the other hand, Type I codes can not be extremal if their length
divides 24 (see Theorem 1.4.6). Therefore, in this chapter we will just consider
codes of length n = 24m + 8`, where ` = 1 or 2.

In this chapter we investigate how good codes of different types perform
if used for error correction in data transmission. This information allows to
compare the codes. To measure performance we will consider the probability of
erroneous decoding. That is, the code is said to perform better if the decoding
error probability is smaller.

The chapter is structured as follows. First, we introduce a way to measure
performance, which is based on comparing the weight enumerators of codes.
Then, we consider how known extremal self-dual codes perform. After that,
we find the best performing representatives (weight enumerator-wise) among
Type I codes and compare those to Type II codes for lengths, for which the latter
codes might exist. The chapter is mainly based on [10].

3.1 A way to measure performance of codes

The question of decoding error probabilities was studied by Faldum et. al. [28]
for bounded distance decoding. For reader’s convenience we repeat their result,

66 CHAPTER 3. PERFORMANCE OF SELF-DUAL CODES

which we shall apply below to measure the quality of performance.
Assume that a linear [n, k, d]q code C is used for error correction in data

transmission over a non-reliable channel with symbol error probability p. In
addition, we assume that bounded distance decoding is used, i.e., we decode only
up to t ≤ d−1

2 errors. Finally, for x ∈ Fn
q and r ∈N0 the set

Br(x) =
{

y | y ∈ Fn
q , dist(x, y) ≤ r

}
describes the ball around x of radius r. Recall from Section 1.1 that dist(x, y)
stands for the Hamming distance between the vectors x and y. A received vec-
tor y is decoded to a codeword x if and only if y ∈ Bt(x).

Clearly, a decoding error occurs exactly when the receiver gets a vector
y ∈ Bt(c) for some codeword c ∈ C that was not transmitted. Thus, the proba-
bility of a decoding error is the conditioned probability

P(C, t, p) = P
(
X ∈ C \ {c} |Y ∈ Bt(c)

)
,

where the random variable X stands for the transmitted codeword and Y — for
the received vector. The main result of [28] shows the correspondence between
the decoding error probability and the weight distribution of the code C for
small symbol error probability.

Definition 3.1.1. Let u = (u0, u1, . . . , un) and v = (v0, v1, . . . , vn) be two vectors
in Zn+1. We say that u is lexicographically smaller than v if there is an index
j ∈ {0, 1, . . . , n}, such that ui = vi for all 0 ≤ i < j and uj < vj.

Theorem 3.1.2 ([28]). Let C and C′ be two [n, k, d]q codes with weight distributions
(Ai)0≤i≤n and

(
A′i
)

0≤i≤n respectively. If the symbol error probability p is small enough
then for all t ≤ d−1

2 the following two conditions are equivalent:

(i) P(C, t, p) < P(C′, t, p).

(ii) (A0, . . . , An) is lexicographically smaller than (A′0, . . . , A′n).

Remark 3.1.3. The function f (p) = P(C′, t, p) − P(C, t, p) is a polynomial in p
with coefficients in Q. More precisely, f (p) is of the form

f (p) = (A′l − Al)

(
l
t

)(
1

q− 1

)l−t
pl−t + terms in pr with r > l − t,

where l is the smallest position, in which the weight distributions of C and C′

differ. Hence, if p is small enough we get f (p) > 0 if and only if Al < A′l.
For more details see [28].

Thus, for small p the quality of performance can be read off from the weight
distribution. We define performance of codes in the spirit of Theorem 3.1.2.

3.2. Performance of known extremal binary codes 67

Definition 3.1.4. Let C and C′ be two [n, k, d] codes with weight distributions
(A0, . . . , An) and (A′0, . . . , A′n), respectively. We say that C performs better than C′,
if (A0, . . . , An) is lexicographically smaller than (A′0, . . . , A′n).

Our goal is to compare two different types of binary self-dual codes in the
sense of the definition given above. However, before moving to that we inves-
tigate how self-dual codes compare to non-self-dual ones as far as their perfor-
mance is concerned.

3.2 Performance of known extremal binary codes

Let C be a Type II code of length n and minimum distance d with weight dis-
tribution (A0, . . . , An). Suppose that C′ is any non-self-dual code with the same
parameters as C and that the weight distribution of C′ is (A′0, . . . , A′n). Since C
is doubly-even, we have Ak = 0 for all k 6≡ 0 mod 4. Thus, the weight function
takes generically less values on C than on C′; in other words, the codewords of C
are concentrated in fewer weight values. Therefore, we may expect that A′d < Ad
and, in particular, that C′ performs better than C.

The following example shows that this is not true in general.

Example 3.2.1. Let C be any extremal Type II [32, 16, 8] code, for instance, the
extended quadratic residue code. From Theorem 1.4.3 it follows that A8 = 620.
In [18], Cheng and Sloane contructed a [32, 17, 8] code. If we delete the last
row in the generator matrix of the aforementioned [32, 17, 8] code, we obtain a
[32, 16, 8] code C′, which is not self-dual. With a Magma computation we find
that A′8 = 681. Since A8 < A′8, it follows from Definition 3.1.4 that the Type II
code C performs better than the non-self-dual code C′.

Same arguments as above may be applied when comparing binary self-dual
codes of different types. Indeed, for doubly-even codes only a quarter of all
weight coefficients may be nonzero, whereas for singly-even codes as many as
half of them may be positive. Thus, Type I codes might be expected to perform
better than Type II. However, before making any assumptions based on this
observation alone, we consider lengths, for which extremal self-dual codes of
both types are constructed.

Let C and C′ be extremal self-dual codes of length n of Types II and I, re-
spectively. From Theorem 1.4.6 we know that an extremal self-dual code of
length n = 24m is always doubly-even. Thus, we assume that n = 24m + 8 or
n = 24m + 16, since we want the codes C and C′ to have the same parameters.
Recall from Section 1.1 that the minimum distance of C and C′ is d = 4m + 4.
Let Ad and A′d denote the number of codewords of weight d in C and C′, re-
spectively. Information that we found by checking examples of known extremal

68 CHAPTER 3. PERFORMANCE OF SELF-DUAL CODES

n d Ad (Type II) A′d (Type I)

32 8 620 364

40 8 285
125 + 16β (0 ≤ β ≤ 26)

(two codes are known with A′d = 285, i.e. β = 10)
56 12 8 190 ≤ 4 862

64 12 2 976
1 312 + 16β (0 ≤ β ≤ 284)

(in all known examples A′d ≤ 2 336 and β ≤ 64)
80 16 97 565 ≤ 66 845

104 20 1 136 150 ≤ 739 046

Table 3.1: Number of codewords of minimum weight in binary extremal self-
dual codes

codes is presented in Table 3.1. For the existence of particular codes we refer the
reader to [13], [25], and [20].

From the table we see that Type I codes always perform better than Type II
codes, provided n = 24m + 8 ≥ 32. The parameter β in the last column of
Table 3.1 takes care of the fact that the weight distribution of a Type I code is not
unique in general. For n = 56, 80, and 104 we have computed a′d for all possible
weight distributions and the bounds are given in the fourth column. Finally note
that for n = 40 the two known Type I codes that satisfy A′d = 285 perform worse
than any extremal Type II code since A′d+2 6= 0, but Ad+2 = 0.

3.3 Best performing extremal Type I codes

Let C be an extremal Type I code of length n = 24m + 8` (` = 1 or 2) with the
weight enumerator

WC(x, y) =
n

∑
i=0

Aixn−iyi.

Since Ai = 0 for odd i, we can set ai/2 = Ai for even i and use the homogeneous
polynomial A(x, y) with coefficients aj, 0 ≤ j ≤ n

2 , instead of WC(x, y). With
Theorem 1.4.1 we obtain

A(x, y) =
n/2

∑
j=0

ajxn−2jy2j =
n/8

∑
i=0

ci
(
x2 + y2) n

2−4i
{

x2y2(x2 − y2)2
}i

(3.1)

with aj ∈N0 and ci ∈ Q.
Let S denote the shadow of the code C. Further let

WS(x, y) =
n

∑
j=0

Bjxn−jyj

3.3. Best performing extremal Type I codes 69

be the weight enumerator of the shadow. Since n is a multiple of 8, from Theo-
rem 1.4.5 we know that Bj = 0 if j 6≡ 0 mod 4. Setting bj = B4j, 0 ≤ j ≤ n

4 and
using Theorem 1.4.5 we can write

S(x, y) =
n/4

∑
j=0

bjxn−4jy4j =
n/8

∑
i=0

(−1)ici2
n
2−6i(xy)

n
2−4i(x4 − y4)2i, (3.2)

where bj ∈ N0 and ci ∈ Q are the same as in (3.1). In what follows we use
S(x, y) in place of the shadow weight enumerator WS(x, y).

In the remaining part of this section we prove that s-extremal codes are the
best performing extremal Type I codes. In particular, we show that the num-
ber a2m+2 of codewords of minimum weight is smallest in case of s-extremal
codes.

Theorem 3.3.1. In the set of self-dual extremal codes of Type I and length n = 24m + 8
or n = 24m + 16 the s-extremal codes perform best of all.

Proof. Here we only consider the case n = 24m + 8. For the other case the proof
runs similarly with only some minor changes in the formulas.

Let C be an arbitrary extremal Type I code of length n = 24m + 8 and let S
denote its shadow. Since all weights of the shadow are divisible by 4 the mini-
mum weight of the shadow can be written as 4s with s ≥ 1. We express the
dependency on s in the formulas for the weight enumerators.

Setting x = 1 in (3.1) and (3.2) we obtain

A(s)(y) =
12m+4

∑
j=0

a(s)j y2j =
3m+1

∑
i=0

c(s)i
(
1 + y2)12m+4−4i

{
y2(1− y2)2

}i
,

S(s)(y) =
6m+2

∑
j=0

b(s)j y4j =
3m+1

∑
i=0

(−1)ic(s)i 212m+4−6iy12m+4−4i(1− y4)2i.

Recall that a(s)j , b(s)j ∈ N0 and c(s)j ∈ Q. As in [70] we express c(s)i as a linear

combination of the a(s)j for 0 ≤ j ≤ i and as a linear combination of the b(s)j for
0 ≤ j ≤ n

8 − i.

c(s)i =
i

∑
j=0

αija
(s)
j =

3m+1−i

∑
j=0

βijb
(s)
j

with αij, βij ∈ Q. We want to remark that αij and βij do not depend on the
parameter s. From [70] for βij, i > 0, we have

βij = (−1)i2−12m−4+6i · 3m + 1− j
i

(
3m + i− j

3m + 1− i− j

)
, (3.3)

One can see that the αij do not depend on s using the Bürmann-Lagrange Theo-
rem (see, for instance, [72, Theorem 32]).

70 CHAPTER 3. PERFORMANCE OF SELF-DUAL CODES

Furthermore, notice that a(s)0 = 1, a(s)j = 0 for j ∈ {1, . . . , 2m + 1}, since C

is extremal, and b(s)j = 0 for j ∈ {1, . . . , s− 1}, since 4s is the minimum weight

of S. Consequently, we have c(s)i = αi,0 for i ∈ {1, . . . , 2m + 1}. Thus, for the

coefficient c(s)2m+2 we obtain the following equation:

c(s)2m+2 = α2m+2,0 + α2m+2,2m+2a(s)2m+2 =
m−1

∑
j=0

β2m+2,jb
(s)
j . (3.4)

One the other hand, (3.3) yields

β2m+2,j = 28 · 3m + 1− j
2m + 2

(
5m + 2− j
m− 1− j

)
, (3.5)

in particular β2m+2,j > 0 for j = 1, 2, . . . , m− 1. Therefore, it follows from (3.4)

that c(s)2m+2 ≥ 0, since b(s)j ≥ 0. Moreover, c(s)2m+2 = 0 if and only if b(s)i = 0 for all
i = 0, 1, . . . , m− 1. By Lemma 1.4.7 we get 4s ≤ 4m since d = 4m + 4, and in the
case s = m the code C is s-extremal. This shows that c(s)2m+2 = 0 if and only if C
is s-extremal. In this case we have

a(m)
2m+2 = − α2m+2,0

α2m+2,2m+2
. (3.6)

We go back to the general case, i.e., we do not assume that C is s-extremal.
Now, from (3.4) we obtain

a(s)2m+2 =
c(s)2m+2 − α2m+2,0

α2m+2,2m+2
=

c(s)2m+2
α2m+2,2m+2

+ a(m)
2m+2. (3.7)

To prove the theorem, we only have to show that

a(s)2m+2 > a(m)
2m+2 for 1 ≤ s ≤ m− 1.

This is obviously equivalent to proving that α2m+2,2m+2 is positive, since we have
c(s)2m+2 > 0 for s < m.

From [70] we know that

αi,0 = − n
2i

[
coeff. of yi−1 in (1 + y)−n/2−1+4i(1− y)−2i

]
= −12m + 4

i

[
coeff. of yi−1 in (1 + y)−12m−5+4i(1− y)−2i

]
.

For i = 2m + 2 we compute

α2m+2,0 = −12m + 4
2m + 2

[
coeff. of y2m+1 in (1 + y)−12m−5+8m+8(1− y)−4m−4

]
= −6m + 2

m + 1

[
coeff. of y2m+1 in (1 + y)−4m+3(1− y)−4m−4

]
= −6m + 2

m + 1

[
coeff. of y2m+1 in (1 + y)7(1− y2)−4m−4

] (3.8)

3.4. Performance comparison of extemal Type I and Type II codes 71

and it follows that α2m+2,0 is negative. Since a(m)
2m+2 is positive, we obtain from (3.6)

that α2m+2,2m+2 is also positive, which completes the proof.

Remark 3.3.2. We would like to mention that we do not have a(s−1)
2m+2 ≥ a(s)2m+2 in

general. In particular, it may happen that a(1)2m+2 < a(s)2m+2 for some s > 1. For

example, if n = 80 then a(1)2m+2 = 58 653 while a(2)2m+2 can be as large as 66 845.

3.4 Performance comparison of extemal Type I and
Type II codes

In this section we prove the following result.

Theorem 3.4.1.

(i) Extremal Type I codes with minimal shadow perform better than extremal Type II
codes for lengths n = 24m+ 8. In particular, s-extremal codes perform better than
extremal Type II codes.

(ii) s-extremal Type I codes perform better than extremal Type II codes for lengths
n = 24m + 16.

Proof. Keeping notation of the previous section we first consider an extremal
Type I code C with minimal shadow S of length n = 24m + 8. It follows from
Definition 1.4.9 that the minimum weight 4s of the shadow S equals 4. Clearly S
contains at least one vector, say v, of weight 4. Suppose that S contains another
vector w 6= v with wt(w) = i for some i ∈ {4, 8, 12, . . . , 4m − 4}. Recall from
Setion 1.4 that a sum of any two vectors in S is a codeword in C. Hence, we have
v + w ∈ C with 0 6= wt(v + w) ≤ 4m, a contradiction to the extremality of C.
This shows that

b(1)1 = 1, b(1)2 = · · · = b(1)m−1 = 0.

Rewriting equation (3.4) we get

c(1)2m+2 = α2m+2,0 + α2m+2,2m+2a(1)2m+2 = β2m+2,1.

Using equations (3.7) and (3.6) we see that

a(1)2m+2 =
c(1)2m+2 − α2m+2,0

α2m+2,2m+2
=

β2m+2,1

α2m+2,2m+2
+ a(m)

2m+2

= −β2m+2,1

α2m+2,0
a(m)

2m+2 + a(m)
2m+2 = a(m)

2m+2

(
1− β2m+2,1

α2m+2,0

)
.

(3.9)

Note that all terms of (3.9) are computable. The number a(m)
2m+2 of minimum

weight vectors of the s-extremal code is given by Lemma 1.4.8. We have

a(m)
2m+2 =

6m + 2
m + 1 ∑

j,k∈N
j+k=2m+1

(−1)j
(

4m− 4 + j
j

)(
4m + k + 3

k

)
.

72 CHAPTER 3. PERFORMANCE OF SELF-DUAL CODES

Furthermore, from (3.5) we know that

β2m+2,1 = 28 · 3m
2m + 2

(
5m + 1
m− 2

)
.

Finally, from (3.8) we obtain

α2m+2,0 = −6m + 2
m + 1

[
7
(

5m + 3
m

)
+

(
7
3

)(
5m + 2
m− 1

)
+

(
7
5

)(
5m + 1
m− 2

)
+

(
5m

m− 3

)]
.

Thus we can compute a(1)2m+2 explicitely.

Let C′ be an extremal Type II code of length n = 24m + 8 with A′4m+4 code-
words of weight 4m + 4. From Theorem 1.4.3 we know that

A′4m+4 =
1
4
(24m + 8)(24m + 7)(24m + 6)(24m + 4)

(5m)!
m!(4m + 4)!

.

Furthermore, from Theorem 1.1.10 (a) it follows that m < 159. Using a computer
one easily verifies that

a(1)2m+2 < A′4m+4

for m = 1, 2, . . . , 158. Thus, we may conclude that in the case n = 24m + 8 ex-
tremal Type I codes with minimal shadow always perform better than extremal
Type II codes. Finally, with Theorem 3.3.1 we have

a(m)
2m+2 < a(1)2m+2 < A′4m+4,

which shows that s-extremal codes perform better than extremal Type II codes.
Thus, part (i) of the theorem is proven.

Now, let C be an s-extremal code of length 24m + 16 and let C′ be an ex-
tremal Type II code of the same length. In this case the minimum weight of the
shadow S of C is 4m + 4 (see Lemma 1.4.7). The number a(m+1)

2m+2 of codewords of
minimum weight of an s-extremal code is given by Lemma 1.4.8

a(m+1)
2m+2 =

6m + 4
m + 1 ∑

j,k∈N
j+k=2m+1

(−1)j
(

4m + j
j

)(
4m + k− 3

k

)
.

From Theorem 1.4.3 we have

A′4m+4 =
3
2
(24m + 16)(24m + 14)

(5m + 2)!
m!(4m + 4)!

for the number of codewords of minimum weight in C′. According to Theo-
rem 1.1.10 (a) we need to compare a(m)

2m+2 and A′4m+4 only for m < 164. This can
be easily done with a computer. We get

a(m+1)
2m+2 < A′4m+4

for all codes of length n = 24m + 16 with m = 1, 2, . . . , 163. This completes the
proof of the theorem.

Appendix A

Code of Magma programs

In the appendix we list the source code of Magma programs for the examples in
Chapters 2 and 3. We refer the reader to [5] for the introduction to Magma.

We distinguish the built-in Magma functions and keywords with bold font in
the listings. Note that we do not provide the code for all user-defined functions.
Instead, we briefly explain what each of them does. We will be happy to send
the full source code by e-mail at reader’s first request.

In the two following programs (Listings A.1 and A.2) we use the user-defined
functions ExtendedBinaryQRCode(p) and PSL2p(p). The first one returns
an extended quadratic residue code of length p + 1. The second generates the
representation of the group PSL(2, p) that acts on an extended quadratic residue
code of length p + 1.

Listing A.1: Program for Example 2.3.9
p := 1871;

C := ExtendedBinaryQRCode(p);

G := PSL2p(p);

_ := exists(g){p : p in G | Order(p) eq 6};

H := sub< G | g >;

S := Fix(C, H);

d := 4*Floor((p+1)/24) + 4;

WordsOfBoundedWeight(S, d-60, d-4: NumWords := 1);

Listing A.2: Program for Example 2.3.10
p := 3823;

C := ExtendedBinaryQRCode(p);

G := PSL2p(p);

H := SylowSubgroup(G, 2);

S := Fix(C, H);

d := 4*Floor((p+1)/24) + 4;

WordsOfBoundedWeight(S, d-60, d-4: NumWords := 1);

74 APPENDIX A. CODE OF MAGMA PROGRAMS

In the following program the user-defined function QDCCode(p) generates
the quadratic double circulant code of length 2p + 2. The function PSLxC(p)

generates the representation of the group PSL(2, p)×Z2 that acts on a quadratic
double circulant code of length 2p + 2 and leaves it invariant.

Listing A.3: Program for Example 2.3.16

p := 1867;

C := QDCCode(p);

G := PSLxC(p);

H := SylowSubgroup(G,2);
S := Fix(C, H);

d := 4*Floor((2*p+2)/24) + 4;

WordsOfBoundedWeight(S, d-60, d-4: NumWords := 1);

In the next program the following user-defined functions are used. The func-
tion Cycls(p) generates the k = p−1

s(p) nonzero cyclotomic cosets modulo p. For a
prime p and a transversal T the function CosetCollections(p, T) returns a
collection of all sets S of cardinality k

2 that satisfy condition (2.6) of Lemma 2.4.7.
The function KnownCyclicAut(p) is used to generate the representation of the
group G = 〈σ〉o 〈µ2〉 (see Lemma 1.3.7) that acts on an extended cyclic code of
length p + 1. Finally, GeneratingIdempotent(p, S) returns the idempotent
of length p that corresponds to a set S (see equation (2.5) of Lemma 2.4.7).

Listing A.4: Program for Example 2.4.16

p := 911;

d := 4*Floor((p+1)/24) + 4;

T := [Min(c) : c in Cycls(p)];

db := CosetCollections(p, T);

G := KnownCyclicAut(p);

_ := exists(g){p: p in G | Order(p) eq 13};

H := sub< G | g >;

for S in db do
Idem := GeneratingIdempotent(p, S);

C := LengthenCode(CyclicCode(Idem));

D := Fix(C, H);

WordsOfBoundedWeight(D, d-60, d-4: NumWords := 1);

end for;

APPENDIX A. CODE OF MAGMA PROGRAMS 75

The function Cycls, which is decribed above, is also used in the following
program. The other user-defined function that we use is ConditionAI. It takes
a set S (which is a union of cyclotomic cosets) as an argument and returns true
if condition (2.10) of Lemma 2.6.7 holds for S.

Listing A.5: Program for Remark 2.6.9. Case n = 512

m := 9; n := 2^m;

Cosets := [PowerSequence(Integers())!c :

c in Cycls(n-1)];

ts := [Min(c) : c in Cosets];

seq := [PadRight(Intseq(t,2), m) : t in ts];

db := [<ts[i], seq[i], &+ seq[i]> : i in [1..#ts]];

WtHalf := [e : e in db | e[3] eq (m-1) div 2];

I1 := [e[1] : e in WtHalf |

ConditionAI(Cosets[Index(ts,e[1])])];

I2 := [];

for i in [1..#I1] do
s := I1[i];

for j in [i+1..#I1] do
t := I1[j];

temp := &cat Cosets[[Index(ts, s), Index(ts,t)]];

if ConditionAI(temp) then
Append(~I2, [s,t]);

end if;
end for;

end for;

I3 := [];

for pair in I2 do
s,t := Explode(pair);
cur := {e[2] : e in I2 | e[1] eq s}

meet {e[2] : e in I2 | e[1] eq t};

for r in cur do
temp := &cat Cosets[

[Index(ts, s), Index(ts,t), Index(ts,r)]];

if ConditionAI(temp) then
Append(~I3, [s,t,r]);

end if;
end for;

end for;

76 APPENDIX A. CODE OF MAGMA PROGRAMS

The built-in function AGL(m, 2) that we use in the next program returns
AGL(m, 2) as a permutation group of degree 2m. The group G = T o SL(3, 23)

is constructed as a subgroup of AGL(9, 2). To obtain the vector space V = Fn
2 as

an F2G-module W we use the command W = PermutationModule(G, V).
We convert a module M to a subspace U ≤ Fn

2 using the built-in function
Morphism(M, W), which returns the embedding of M into W, and the con-
structor sub of subspaces. A subspace U is converted to a code C using the
function LinearCode.

Listing A.6: Program for Example 2.7.4

m := 9; n := 2^m;

d := 4*Floor(n/24) + 4;

G0 := AGL(m, 2);

Subs := Subgroups(G0 : IsTransitive := true,
OrderEqual := (2^m)*16482816);

G := Subs[1]‘subgroup;
V := VectorSpace(GF(2), n);

W := PermutationModule(G, V);

VS := Submodules(W);
VSK := [m : m in VS | Dimension(m) eq n div 2];

for M in VSK do
phi := Morphism(M, W);

U := sub< V | [V!phi(x) : x in Basis(M)] >;

C := LinearCode(U);
if IsSelfDual(C) then

if IsDoublyEven(C) then
WordsOfBoundedWeight(C, d-30, d-4: NumWords := 1);

end if;
end if;

end for;

The built-in function PSp(2*d, 2) that is uses in the following program
returns the permutation representation of PSp(2 ∗ d, 2) of degree 4095.

Listing A.7: Program for Example 2.8.4

G0 := PSp(2*6,2);
Hm := PSOMinus(2*6,2);
n := Index(G0,Hm);
G := CosetImage(G0, Hm);

V := VectorSpace(GF(2), n);

PV := PermutationModule(G, V);

[Dimension(m) : m in Submodules(PV)];

APPENDIX A. CODE OF MAGMA PROGRAMS 77

In the following program we use a built-in function PGL(m, 2) to generate
the group GL(m, 2) = PGL(m, 2) as a permutation group of degree 2m − 1.

Listing A.8: Program for Example 2.9.2

m := 6; n := 2^m;

K := GF(3);
Subs := Subgroups(PGL(m,2) : IsTransitive := true);

TTGroups := [];

for H in Subs do
ord := H‘order;
ASubs := Subgroups(AGL(m,2) : IsTransitive := true,

OrderEqual := (2^m)*ord);

for i in [1..#ASubs] do
A := ASubs[i];

if IsTransitive(A‘subgroup, 2) then
Append(~TTGroups, A‘subgroup);

end if;
end for;

end for;

for G in TTGroups do
V := VectorSpace(K,n);
PV := PermutationModule(G, V);

VS := Submodules(PV);
[m : m in VS | Dimension(m) eq n div 2];

end for;

78 APPENDIX A. CODE OF MAGMA PROGRAMS

In the next program we construct the permutation representation of the
group G = M22 of degree 22 using the constructor PermutationGroup. The
generators for the representation are taken from the Atlas of Finite Group Rep-
resentations [79].

Listing A.9: Program for Example 2.10.2

G := PermutationGroup< 22 |

[13,8,16,12,5,22,17,2,10,9,14,4,1,11,15,3,7,18,19,20,21,6],

[22,18,21,13,12,11,15,14,9,8,7,5,2,20,6,16,19,4,17,10,1,3]

>;

n := 22;

K := GF(4);
V := VectorSpace(K,n);
PV := PermutationModule(G, V);

VS := Submodules(PV);
Mods := [M : M in VS | Dimension(M) eq (n div 2)];

Codes := [];

for M in Mods do;
phi := Morphism(M, PV);

U := sub< V | [V!phi(x) : x in Basis(M)] >;

C := LinearCode(U);
if IsHermitianOrthogonal(C) then
if IsEven(C) then

Append(~Codes, C);

end if;
end if;

end for;

Extremal := [];

for C in Codes do
d := MinimumDistance(C);
if d eq (2*Floor(n div 6)+2) then
Append(~Extremal, C);

end if;
end for;

IsEquivalent(Extremal[1], Extremal[2]);

Bibliography

[1] E. F. Assmus, Jr. and H. F. Mattson, Jr. New 5-designs. J. Combinatorial
Theory, 6:122–151, 1969.

[2] E. F. Assmus, Jr. and H. F. Mattson, Jr. On weights in quadratic-residue
codes. Discrete Math., 3:1–20, 1972.

[3] C. Bachoc and P. Gaborit. Designs and self-dual codes with long shadows.
J. Combin. Theory Ser. A, 105(1):15–34, 2004.

[4] M. Borello. The automorphism group of an extremal [72, 36, 16] code does
not contain elements of order 6.
Preprint available at http://arxiv.org/abs/1203.3321v1.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[6] S. Bouyuklieva. On the automorphisms of order 2 with fixed points for
the extremal self-dual codes of length 24m. Des. Codes Cryptogr., 25(1):5–13,
2002.

[7] S. Bouyuklieva. On the automorphism group of a doubly-even (72, 36, 16)
code. IEEE Trans. Inform. Theory, 50(3):544–547, 2004.

[8] S. Bouyuklieva. Some optimal self-orthogonal and self-dual codes. Discrete
Math., 287(1-3):1–10, 2004.

[9] S. Bouyuklieva, A. Malevich, and W. Willems. Automorphisms of extremal
self-dual codes. IEEE Trans. Inform. Theory, 56(5):2091–2096, 2010.

[10] S. Bouyuklieva, A. Malevich, and W. Willems. On the performance of binary
extremal self-dual codes. Adv. Math. Commun., 5(2):267–274, 2011.

[11] S. Bouyuklieva, E. A. O’Brien, and W. Willems. The automorphism group
of a binary self-dual doubly even [72, 36, 16] code is solvable. IEEE Trans.
Inform. Theory, 52(9):4244–4248, 2006.

80 BIBLIOGRAPHY

[12] S. Bouyuklieva and W. Willems. Singly-even self-dual codes with minimal
shadow.
Preprint available at http://arxiv.org/abs/1106.5936v2.

[13] S. Bouyuklieva and V. Yorgov. Singly-even self-dual codes of length 40. Des.
Codes Cryptogr., 9(2):131–141, 1996.

[14] F. C. Bussemaker and V. D. Tonchev. Extremal doubly-even codes of length
40 derived from Hadamard matrices of order 20. Discrete Math., 82(3):317–
321, 1990.

[15] P. J. Cameron. Finite permutation groups and finite simple groups. Bull.
London Math. Soc., 13(1):1–22, 1981.

[16] P. Camion. Codes quadratiques abéliens et plans inversifs miquéliens. C. R.
Acad. Sci. Paris Sér. A-B, 284(21):A1401–A1404, 1977.

[17] P. Charpin and F. Levy-dit-Vehel. On self-dual affine-invariant codes. J.
Combin. Theory Ser. A, 67(2):223–244, 1994.

[18] Y. Cheng and N. J. A. Sloane. Codes from symmetry groups, and a [32, 17, 8]
code. SIAM J. Discrete Math., 2(1):28–37, 1989.

[19] J. H. Conway and V. Pless. On primes dividing the group order of a doubly-
even (72, 36, 16) code and the group order of a quaternary (24, 12, 10)
code. Discrete Math., 38(2-3):143–156, 1982.

[20] J. H. Conway and N. J. A. Sloane. A new upper bound on the minimal
distance of self-dual codes. IEEE Trans. Inform. Theory, 36(6):1319–1333, 1990.

[21] J. de la Cruz. Über die Automorphismengruppe extremaler Codes der Längen 96
und 120. PhD thesis, Otto-von-Guericke University Magdeburg.

[22] J. D. Dixon and B. Mortimer. Permutation groups, volume 163 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1996.

[23] R. Dontcheva. On the doubly-even self-dual codes of length 96. IEEE Trans.
Inform. Theory, 48(2):557–561, 2002.

[24] R. Dontcheva and M. Harada. Extremal doubly-even [80,40,16] codes with
an automorphism of order 19. Finite Fields Appl., 9(2):157–167, 2003.

[25] R. Dontcheva and M. Harada. Some extremal self-dual codes with an au-
tomorphism of order 7. Appl. Algebra Engrg. Comm. Comput., 14(2):75–79,
2003.

BIBLIOGRAPHY 81

[26] R. A. Dontcheva, A. J. van Zanten, and S. M. Dodunekov. Binary self-dual
codes with automorphisms of composite order. IEEE Trans. Inform. Theory,
50(2):311–318, 2004.

[27] I. Duursma. Extremal weight enumerators and ultraspherical polynomials.
Discrete Math., 268(1-3):103–127, 2003.

[28] A. Faldum, J. Lafuente, G. Ochoa, and W. Willems. Error probabilities for
bounded distance decoding. Des. Codes Cryptogr., 40(2):237–252, 2006.

[29] T. Feulner and G. Nebe. The automorphism group of a self-dual binary
[72, 36, 16] code does not contain Z7, Z3 × Z3, or D10.
Preprint available at http://arxiv.org/abs/1110.6012.

[30] A. M. Gleason. Weight polynomials of self-dual codes and the MacWilliams
identities. In Actes du Congrès International des Mathématiciens (Nice, 1970),
Tome 3, pages 211–215. Gauthier-Villars, Paris, 1971.

[31] M. J. E. Golay. Notes on digital coding. In Proceedings of the I.R.E., volume
37, page 657. 1949.

[32] T. A. Gulliver and M. Harada. Classification of extremal double circulant
self-dual codes of lengths 64 to 72. Des. Codes Cryptogr., 13(3):257–269, 1998.

[33] T. A. Gulliver and M. Harada. Classification of extremal double circulant
self-dual codes of lengths 74–88. Discrete Math., 306(17):2064–2072, 2006.

[34] R. W. Hamming. Error detecting and error correcting codes. Bell System
Tech. J., 29:147–160, 1950.

[35] M. Harada. An extremal doubly even self-dual code of length 112. Electron.
J. Combin., 15(1):Note 33, 5, 2008.

[36] M. Harada, T. A. Gulliver, and H. Kaneta. Classification of extremal double-
circulant self-dual codes of length up to 62. Discrete Math., 188(1-3):127–136,
1998.

[37] S. K. Houghten, C. W. H. Lam, L. H. Thiel, and J. A. Parker. The extended
quadratic residue code is the only (48, 24, 12) self-dual doubly-even code.
IEEE Trans. Inform. Theory, 49(1):53–59, 2003.

[38] W. C. Huffman. The automorphism groups of the generalized quadratic
residue codes. IEEE Trans. Inform. Theory, 41(2):378–386, 1995.

[39] W. C. Huffman. On the classification and enumeration of self-dual codes.
Finite Fields Appl., 11(3):451–490, 2005.

82 BIBLIOGRAPHY

[40] W. C. Huffman, V. Job, and V. Pless. Multipliers and generalized multipliers
of cyclic objects and cyclic codes. J. Combin. Theory Ser. A, 62(2):183–215,
1993.

[41] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cam-
bridge University Press, Cambridge, 2003.

[42] W. C. Huffman and V. Y. Yorgov. A [72, 36, 16] doubly even code does not
have an automorphism of order 11. IEEE Trans. Inform. Theory, 33(5):749–
752, 1987.

[43] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen
Wissenschaften, Band 134. Springer-Verlag, Berlin, 1967.

[44] B. Huppert and N. Blackburn. Finite groups. III, volume 243 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1982.

[45] V. Ĭ. Ĭorgov. Binary self-dual codes with automorphisms of odd order. Prob-
lemy Peredachi Informatsii, 19(4):11–24, 1983.

[46] V. Ĭ. Ĭorgov and R. Ruseva. Two extremal codes of length 42 and 44. Problemy
Peredachi Informatsii, 29(4):99–103, 1993.

[47] I. M. Isaacs. Finite group theory, volume 92 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2008.

[48] N. Ito. A characterization of quadratic residue codes. Math. J. Okayama
Univ., 28:1–5 (1987), 1986.

[49] M. Karlin and F. J. MacWilliams. On finding low weight vectors in quadratic
residue codes for p = 8m− 1. SIAM J. Appl. Math., 25:95–104, 1973.

[50] T. Kasami, S. Lin, and W. W. Peterson. Some results on cyclic codes which
are invariant under the affine group and their applications. Information and
Control, 11:475–496, 1967.

[51] W. Knapp and P. Schmid. Codes with prescribed permutation group. J.
Algebra, 67(2):415–435, 1980.

[52] J. S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Trans. Inform. Theory, 34(5, part 2):1354–
1359, 1988. Coding techniques and coding theory.

[53] J. S. Leon, J. M. Masley, and V. Pless. Duadic codes. IEEE Trans. Inform.
Theory, 30(5):709–714, 1984.

BIBLIOGRAPHY 83

[54] M. W. Liebeck. On the orders of maximal subgroups of the finite classical
groups. Proc. London Math. Soc. (3), 50(3):426–446, 1985.

[55] F. J. MacWilliams, C. L. Mallows, and N. J. A. Sloane. Generalizations of
Gleason’s theorem on weight enumerators of self-dual codes. IEEE Trans.
Information Theory, IT-18:794–805, 1972.

[56] F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, and H. N. Ward. Self-dual
codes over GF(4). J. Combin. Theory Ser. A, 25(3):288–318, 1978.

[57] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II.
North-Holland Publishing Co., Amsterdam, 1977. North-Holland Mathe-
matical Library, Vol. 16.

[58] A. Malevich and W. Willems. On the classification of the ex-
tremal self-dual codes over small fields with 2-transitive automor-
phism groups. Designs, Codes and Cryptography. Available online at
http://dx.doi.org/10.1007/s10623-012-9655-9.

[59] C. L. Mallows and N. J. A. Sloane. An upper bound for self-dual codes.
Information and Control, 22:188–200, 1973.

[60] C. Martínez-Pérez and W. Willems. Self-dual extended cyclic codes. Appl.
Algebra Engrg. Comm. Comput., 17(1):1–16, 2006.

[61] J. Mykkeltveit, C. Lam, and R. J. McEliece. On the weight enumerators of
quadratic residue codes. JPL Technical Report 32-1526, XII:161–166, 1972.

[62] G. Nebe. An extremal [72, 36, 16] binary code has no automorphism group
containing Z2 × Z4, Q8, or Z10.
Preprint available at http://arxiv.org/abs/1109.1680.

[63] E. A. O’Brien and W. Willems. On the automorphism group of a binary self-
dual doubly even [72, 36, 16] code. IEEE Trans. Inform. Theory, 57(7):4445–
4451, 2011.

[64] P. P. Pálfy. Isomorphism problem for relational structures with a cyclic
automorphism. European J. Combin., 8(1):35–43, 1987.

[65] V. Pless. On the uniqueness of the Golay codes. J. Combinatorial Theory,
5:215–228, 1968.

[66] V. Pless. 23 does not divide the order of the group of a (72, 36, 16) doubly
even code. IEEE Trans. Inform. Theory, 28(1):113–117, 1982.

[67] V. Pless, J. M. Masley, and J. S. Leon. On weights in duadic codes. J. Combin.
Theory Ser. A, 44(1):6–21, 1987.

84 BIBLIOGRAPHY

[68] V. Pless and J. G. Thompson. 17 does not divide the order of the group of
a (72, 36, 16) doubly even code. IEEE Trans. Inform. Theory, 28(3):537–541,
1982.

[69] V. S. Pless, W. C. Huffman, and R. A. Brualdi, editors. Handbook of coding
theory. Vol. I, II. North-Holland, Amsterdam, 1998.

[70] E. M. Rains. Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory,
44(1):134–139, 1998.

[71] E. M. Rains. New asymptotic bounds for self-dual codes and lattices. IEEE
Trans. Inform. Theory, 49(5):1261–1274, 2003.

[72] E. M. Rains and N. J. A. Sloane. Self-dual codes. In Handbook of coding theory,
Vol. I, II, pages 177–294. North-Holland, Amsterdam, 1998.

[73] N. J. A. Sloane. Is there a (72, 36) d = 16 self-dual code? IEEE Trans.
Information Theory, IT-19(2):251, 1973.

[74] J. H. van Lint and F. J. MacWilliams. Generalized quadratic residue codes.
IEEE Trans. Inform. Theory, 24(6):730–737, 1978.

[75] H. N. Ward. Quadratic residue codes and symplectic groups. J. Algebra,
29:150–171, 1974.

[76] H. N. Ward. A restriction on the weight enumerator of a self-dual code. J.
Combinatorial Theory Ser. A, 21(2):253–255, 1976.

[77] H. N. Ward. Quadratic residue codes and divisibility. In Handbook of coding
theory, Vol. I, II, pages 827–870. North-Holland, Amsterdam, 1998.

[78] W. Willems. A note on self-dual group codes. IEEE Trans. Inform. Theory,
48(12):3107–3109, 2002.

[79] R. Wilson, P. Walsh, J. Tripp, and I. Suleiman. Atlas of finite group repre-
sentations.
Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/.

[80] N. Yankov. A putative doubly even [72,36,16] code does not have an auto-
morphism of order 9. IEEE Trans. Inform. Theory, 58(1):159 –163, jan. 2012.

[81] V. Y. Yorgov. Doubly-even extremal codes of length 64. Problemy Peredachi
Informatsii, 22(4):35–42, 1986.

[82] V. Y. Yorgov. A method for constructing inequivalent self-dual codes with
applications to length 56. IEEE Trans. Inform. Theory, 33(1):77–82, 1987.

BIBLIOGRAPHY 85

[83] V. Y. Yorgov. On the minimal weight of some singly-even codes. IEEE Trans.
Inform. Theory, 45(7):2539–2541, 1999.

[84] R. A. Yorgova. On binary self-dual codes with automorphisms. IEEE Trans.
Inform. Theory, 54(7):3345–3351, 2008.

[85] S. Zhang. On the nonexistence of extremal self-dual codes. Discrete Appl.
Math., 91(1-3):277–286, 1999.

Index

affine-invariant code, 51
all-one vector 1 ∈ Fn, 14
automorphism, 18

group, 18
type of, 35

Yorgov’s theorem, 36

bounded distance decoding, 66

ciculant matrix, 34
code, 13

augmented, 14
dual, 15
equivalent, 18
even-like, 14
extended, 14
lengthened, 14
odd-like, 14
punctured, 14
self-orthogonal, 15
shortened, 14

codeword, 13
even-like, 14

cyclic code, 21
generator polynomial, 21
automorphism group, 23
defining set, 22
idempotent, 22
nonzeros, 22
with self-dual extension, 24, 35
zeros, 22

cyclotomic coset, 21

t-design, 16
divisible code, 15

divisor, 15
Gleason–Pierce theorem, 15

Gleason–Pierce–Ward theorem, 16
double circulant code

bordered, 34
quadratic, 34, 41

duadic code, 23
defining set of, 23
even-like, 23
idempotent of, 24
odd-like, 23
splitting for, 24
with self-dual extension, 24

elementary abelian group, 19

Frobenius automorphism, 15

global conjugation, 15

lexicographical ordering, 66

monomial transformation, 18
multiplier µa, 22

orbit, 18

performance of codes, 67

quadratic residue, 25
quadratic residue code, 25, 38

generalized, 40–41

scalar product
Hermitian, 14
standard (Euclidean), 14

self-dual code, 15
extremal, 16

bounds on length, 17–18
of Type I-IV, 16

shadow, 27–28

88 INDEX

code with minimal shadow, 29
minimum weight of, 28
s-extremal code, 28
weight enumerator of, 28

simple group, 19
socle, 19
splitting of n given by µb, 24
stabilizer, 19

transitive group, 18
2-transitive group, 19
transversal, 21

weight, 13
distibution, 25

weight enumerator, 25
Gleason’s theorem, 26
MacWilliams transform, 26

2-weight, 52

	Introduction
	Preliminaries
	Extremal self-dual codes
	Automorphism groups, group algebras
	Cyclic and duadic codes
	Weight enumerators of self-dual codes

	Automorphisms of extremal codes
	Known extremal Type II codes and their automorphisms
	Types of automorphisms of binary extremal codes
	Extremal Type II codes arising from quadratic residues
	Extremal Type II extended cyclic codes
	Automorphism groups of binary extended duadic codes
	Extremal binary affine-invariant codes
	Extremal Type II codes and elementary abelian groups
	Extremal Type II codes with 2-transitive automorphism groups
	Extremal Type III codes with 2-transitive automorphism groups
	Extremal Type IV codes with 2-transitive automorphism groups

	Performance of self-dual codes
	A way to measure performance of codes
	Performance of known extremal binary codes
	Best performing extremal Type I codes
	Performance comparison of extemal Type I and Type II codes

	Code of Magma programs
	Bibliography
	Index

